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Abstract—Team formation (TF) faces the problem of defining
teams of agents able to accomplish a set of tasks. Resilience
on TF problems aims to provide robustness and adaptability to
unforeseen events involving agent deletion. However, agents are
unaware of the inherent social welfare in these teams. This paper
tackles the problem of how teams can minimize their effort in
terms of organisation and communication considering these dy-
namics. Our main contribution is twofold: first, we introduce the
Stabilisable Team Formation (STF) as a generalisation of current
resilient TF model, where a team is stabilisable if it possesses
and preserves its inter-agent organisation from a graph-based
perspective. Second, our experiments show that stabilisability is
able to reduce the exponential execution time in several units
of magnitude with the most restrictive configurations, proving
that communication effort in subsequent task allocation problems
are relaxed compared with current resilient teams. To do so,
we developed SBB-ST, a branch-and-bound algorithm based
on Distributed Constrained Optimisation Problems (DCOP) to
compute teams. Results evidence that STF improves their pre-
decessors, extends the resilience to subsequent task allocation
problems represented as DCOP, and evidence how Stabilisability
contributes to resilient TF problems by anticipating decisions for
saving resources and minimizing the effort on team organisation
in dynamic scenarios.

I. INTRODUCTION

Resilient systems are resistant against perturbations caused
by unforeseen events and capable of recover from a risky
state as efficiently, cheap, and quick as possible. Resilience
is studied in diverse areas, such as ecology [Hol73], psy-
chology [Cou02], disaster management [BCE+03], society
[WHCK03], community [LAP+10], engineering [YM16], and
rescue response [ORBI16]. Resilience in AI is applied in
Multi-Agent Systems (MAS) to extend robustness concepts
[SMI+16], [SOI+13], and is modelled by different approaches
such as parametric model checking [AMI16], stochastic
models [PSZ+18], and constraint-based problems [OSC+15],
[COSI15], [DSOI18], [SOI+18].

Team formation (TF) is a well-known constraint-based
optimization problem that aims to find a team of agents able
to accomplish a set of tasks efficiently, i.e., minimizing a
cost function. The TF problem has been extended applying
different resilience concepts: An agent team is robust if it
maintains its efficiency when a number of agents are removed
from it [OSC+15], and recoverable if the team is efficient
and there is another set of agents capable to restore the
efficiency if such deprivation occurs [DSOI18]. Although these
features prepare teams against unexpected events and ensure

their functionality, costs and teams are modelled with regard
to a goal and obviating agent relationships. In a real scenario,
agents conform teams to face a subsequent task allocation
problem, where agents must negotiate and collaborate to share
and fulfill involved tasks. Such organisation get impacted
from dynamics that imply a removal/addition of agents in the
team. Current resilient TF literature ignores such implications
concerning team organisation and its possible states, so it is
not adequate to represent the task allocation effort.

To illustrate it, consider a rescue response scenario, ap-
plication extensively used for planning problems with MAS
[RFMJ10], [PGCF+15], [SSV16]. Heterogeneous agents such
as drones, vehicles, rescue staff and facilities, must coordinate
to face emerging field tasks. Agents are assembled into teams
able to accomplish these tasks according to their role and
available resources. Fig. 1 shows a resilient team composed of
drones (imagery, video, or delivering) and a base camp (data
collection and monitoring). Each agent possesses an action
range that determines which tasks and communication with
other agents can be performed. Drones need to reassign tasks
due to drone 4 failure. According to the TF literature, the
team is robust because both tasks are accomplishable despite
a member malfunction. But, even if the task is still within the
range of neighbouring drones 3 and 5, they are out of their
communication ranges (in fact, drone 5 is isolated), leading to
unacceptable risks such as task conflicts, mismanagement, or
accidents in the worst case. Success on tasks does not depend
exclusively on agents’ skills, but also on their organisation.
The problem arises when the team is unable to self-organize
given these dynamics, despite its robustness or recoverability.

Stability or Stabilisability definitions are broadly stud-
ied in different Computer Science areas, being prominent
on Artificial Intelligence [TIW96], [WLL10], [SOI+13],
[FAMO14], [COSI15], Distributed and Dynamic Systems
[OW91], [Reb93], [TM04], [SVR+10]. In this paper we intro-
duce the stabilisability concept from Schwind et al. [SOI+13],
concretely on MAS in TF problems from a graph-based
perspective. A team is stabilisable if it preserves certain graph
properties to guarantee or minimize its organisation effort.
Thus, resilience is extended for both team formation and
decentralized task allocation problems.

Our main contribution is a generalisation of the resilient TF
model including stabilisability. We compare the time perfor-
mance of computing both recovery and stabilisable solutions.



Fig. 1: Drone team in a rescue response scenario, where the
drones 3 and 5 on the right are not capable to negotiate the
eastern task after drone 4 went down.

To do so, we design SBB-ST, a TF algorithm based on
distributed problem solving using DCOP framework. During
experimentation, we configure stabilisability with different
graph properties to compute solutions and we evaluate the
effort of such teams during inter-agent organisation. Results
show that stabilisability can significantly reduce the com-
putation time compared with recoverable search, and in the
subsequent task allocation problems for these teams.

The paper is structured as follows: Section 2 describes the
context of the research. Section 3 formalizes the Stabilisable
Team Formation proposal. Section 4 describes SBB-ST, our
branch-and-bound algorithm based on the DCOP framework.
Section 5 shows our experiments and results. Section 6 ex-
poses our discussion on the study and methods used. The
last sections describe related work, conclusions, and future
research lines1.

II. BACKGROUND

According to Schwind and Okimoto et al. [SOI+13],
[SMI+16], Resilience is defined as the capability of a system
to resist and react to critical changes, decomposed in the
following properties:
• Resistance: Maintain overall costs under a threshold

against some perturbations. This property is inherited
from the definition of robustness [Die17].

• Recoverability: The system must be capable to return
from a risky state to a quality one as gracefully and
efficiently as possible.

• Functionality: Maintain and guarantee the average quality
state over the time.

• Stabilisability: Prevent, anticipate and restrict those deci-
sions that involve an awkward system configuration.

These definitions are broad and their detailed description
depend on the problem that it is being faced. When re-
silience is incorporated to a new problem, the first property
implemented is resistance, also called robustness [COSI15],
[OSC+15], [ORBI16], [Die17], [OSD+18]. Then, the remain-
ing properties are considered according to the problem needs

1Sources are accessible in the following GitLab repository:
https://gitlab.com/team-formation/jade-stf

and their viability. In fact, stabilisability was defined as a
desired but accessory property from resilience itself due to be
considered as a function specified by the system controller or a
social component to manage the system [SMI+16]. However,
none of the properties but stabilisability, as it is shown in the
following sections, is capable to model how agents are related
and how they interact, something that have a big impact on the
resistance and reaction of the MAS against unforeseen events.

This paper scopes resilient terminology for TF problems
using MAS. Later, we concrete the definition of stabilisability
of the agent network to introduce our resilient proposal.

A. Resilient Team Formation Problem

Team formation represents the problem of assembling an
agent team to accomplish a set of tasks with the minimum
cost.

1) Robust (Resistant) Team: A basic TF problem is
described as the following question TF = 〈A,P, f, α〉
[OSC+15] where:
• Agents A = {a1, a2, . . . , an} is the set of agents. A

subset of selected agents is called a team T ⊆ A.
• Tasks P = {t1, t2, . . . , tn} is the set of tasks. A subset

of selected tasks is called a goal G ⊆ P .
• Deployment Cost function f : 2A → N ∪ {+∞} is the

attached cost for agents in A, usually defined as the sum
of costs of all agents in T : f(T ) =

∑
ai∈T f (ai)

• Allocation map α : A → 2P the mapping of accom-
plishable tasks by agents.

Definition 1 (team efficiency). T is said to be efficient w.r.t.
G if agents in T are able to accomplish all tasks from G.

Definition 2 (c-cost). T is said to be c-costly if f(T ) ≤ c and
T is efficient w.r.t. G.

Definition 3 (k-robustness). T is said to be 〈c, k〉-robust (or
resistant) w.r.t. G if is c-costly and any set of k agents can be
removed from T without disturbing the efficiency.

In other words, solving a TF problem is finding a team
with the lowest cost capable of fulfilling all the tasks of the
goal. For simplicity, we assumed single costs for agents and
simple tasks, but TF problems may represent more complex
conditions. In the same way that a goal is divided on tasks,
a ”mayor task” or mission can be modelled as another set
of sub-tasks. Moreover, according to the cost function, agents
may possess different cost based on different contributions and
its affordable tasks.

2) Recoverable Team: As a generalisation of the robust TF
problem [DSOI18], a Recoverable Team Formation problem
(RTF ) is the following question 〈TF, h〉 where:
• Team Formation tuple TF = 〈A,P, f, α〉
• Recovery Cost function h : 2A → N∪{+∞} is the cost

of agents in the recovery team Trec ⊆ (A \ T ). Agents
from Trec become part of the team when the initial T
loses k agents. As f , h can be defined as the sum of
costs: h(T ) =

∑
ai∈T h (ai)

https://gitlab.com/team-formation/jade-stf


Definition 4 (k-recoverability). T is 〈cd, k, cr〉-recoverable
w.r.t. G if the deployment cost of T is cd and, for any removal
of k agents Trem from T , there is an auxiliary Trec with the
worst recovery cost cr such that (T \Trem)∪Trec is efficient.

Corollary 1. If T is 〈cd, k, 0〉-recoverable and ∀a ∈
A, h({a}) > 0, T is 〈cd, k〉-robust.

A team is k-recoverable if exists an initial efficient team
and a complementary ”rescue” team that restores the efficiency
after a deprivation of k agents without imposing any additional
cost, just substituting the initial cost of deprived agents by
the recovery cost of the new ones while preserving the c-
costly condition. We define T ′ as a new team state such
that T ′ = (T \ Trem) ∪ Trec. The main idea is to minimize
costs through restoring efficiency rather than composing robust
teams. Okimoto et al. [OSC+15] proved that the robust TF is
NP-hard as an optimisation problem, in the same fashion than
the optimisation version of RTF and k-RTF2 problems as a
generalisation of TF [DSOI18].

B. Agent networks for Task Allocation

The main approaches for distributed problem solving
through MAS are the following [CFMR14]:

• Coalition/Team Formation problem: How agents shall be
grouped in profitable teams or coalitions.

• Distributed Constraint Optimisation Problem: How
agents perform joint decisions for coordinated actions.

• Task/Resource Allocation Problem (TA): How the distri-
bution of resources among the agents are addressed.

TF is a well-suited scenario that combines to a greater or
lesser extent all these issues. TF can be represented as a
constraint-based problem, where teams are assembled based
on allocation costs using optimisation techniques. However,
TF is a one-shot problem that involves the goal success,
not the fine-grained allocation from agents to tasks. Indeed,
inter-agent communication is highly dependent of how teams
have been formed. Runtime performance in TA algorithms
depends on agent communication, mainly because the agent
network defines how the search space is built and traversed.
In distributed problem solving, agent communication in well-
known algorithms and their variants follows concrete topolo-
gies, i.e., trees [PF05a], factor graphs [FRPJ08], or scale-
free graphs [JZW13]. Furthermore, the number of messages,
the message size, and the agent memory size are inherent of
the complexity in distributed algorithms with MAS [FPY16].
Accordingly, studies show how graph networks have an impact
in the performance [Gd08], [OHLN06]. However, performance
worsens when the agent communication graph is far from the
ideal configuration for those algorithms. Several algorithms
have tools to reorganize agents, either by eliminating edges or
loops, or assigning hierarchy/weights to agents but not all of
them have techniques for dealing with dynamics concerning
the agent network and/or agent addition/deletion.

2k-RTF is a RTF problem where k ≥ 0 is a parameter.

Fig. 2: Agent negotiation worsens as the graph becomes
dense or loses some property needed for the distributed task
allocation algorithm.

Example 1. Fig. 2 continues the rescue response example
with a recoverable team, where an auxiliary camp and a
drone replace the lost base camp. Although the rescue team
has guaranteed the goal efficiency, its inclusion provokes the
communication graph to become from sparse to dense. Con-
sidering the problem complexity in addition with the density
of the communication between agents, time performance can
be severely affected, as shown in Section V, incapacitating the
agents to accomplish tasks in the worst case.

From a resilient point of view, the current TF model
possesses the ability of assembly resistant and recoverable
teams against disruptive events but lacks of such social welfare
modelling. Stabilisability definition represents an update to
model all these implications. With all this, a resilient team,
either robust or recoverable, can be also defined as stabilisable
if it maintains certain properties in its initial and possible
future team states, based on its communication network. In
the following sections, we demonstrate how stabilisability an-
ticipates decisions that guarantees the inter-agent organisation
once the team is assembled and, at the same time, relaxes the
communication effort during further reorganisation when such
team changes.

III. STABILISABLE TEAM FORMATION

Stabilisability emerges as the condition for a team T to
guarantee or minimize the organisation effort considering the
the initial organisation of a selected T and any possible future
T ′ provoked by disrupting events.

Definition 5 (STF problem). A Stabilisable TF problem is the
following tuple STF = 〈RTF, SC〉 where SC = 〈δ, l〉 is the
Stabilisability Configuration defined by:

• Network representation δ: Data structure for represent-
ing the agent network.

• Graph function l: 2A → R+ determines the stabilisabil-
ity according to a graph function or property applied over
δ.

We denote by Θ the communication state set to be the
set of all sub-graphs θ ∈ Θ of a team T ∈ A. That is, all
possible efficient teams T ′ generated from the combination of
T \ Trem ∪ Trec where k agents have been removed from T
and agents from Trec have been added.



ai αi f(ai) h(ai) δ = neighbors(ai)

a1 {t1, t2, t3} 5 2 {a2, a3, a4, a5, a6}
a2 {t2, t3} 3 1 {a1, a3, a5, a6}
a3 {t3} 2 1 {a1, a2, a6}
a4 {t1} 1 1 {a1, a6}
a5 {t2} 2 3 {a1, a2}
a6 {t1, t3} 1 2 {a1, a2, a3}

a1 a2 a3

t1 t2 t3

a4 a5 a6

a) 〈3, 2, 2〉-recoverable team
T1={a4, a5}, Trec={a1}

a1 a2 a3

t1 t2 t3

a4 a5 a6

b) 〈3, 2, 2〉-stabilisable team
T2={a2, a4, a5, a6}
bounded by the condition of no
neighboring agents

Fig. 3: STF problem composed by 6 agents, 3 tasks, de-
ployment and recovery costs as f and h respectively. Teams
obtained w.r.t a goal G = {t1, t2}.

Definition 6 (graph bounding). Θ is said to be bounded by a
value v from l if ∀θ ∈ Θ, l(θ) ≤ v

Namely, Θ represents all possible states on how agents
communicate within the assembled team, and l represents a
network requirement applied for such state set. Accordingly,
the team is defined as stabilisable if any network representation
is bounded by a value in l.

Definition 7 (k-stabilisability). T is 〈cd, k, cr, l〉-stabilisable
w.r.t. G if T is 〈cd, k, cr〉-recoverable and Θ is bounded by l.

Fig. 3 shows a recoverable and stabilisable teams for a STF
problem. T1 and T2 possess initial teams with cost 3 that if
they are removed (k = 2), the recovery team take action with
a cost of 2. Both teams are just efficient (0-robust) w.r.t to G
but the addition of Trec restores the efficiency any case.

Example 2. Suppose that in our scenario the drones from
the team must fulfil the tasks by their own once they leave
the outpost. That is, agents must be capable to finish the task
allocation problem being isolated from each other once they
go into action. To guarantee that, we are looking for a team
where no inter-communication is needed at all, including for
those standby agents if any fail. For simplicity, we assume
that 2 agents are connected and exchange messages if they
have tasks in common (for example: negotiation, resource
sharing, conflicts resolution, etc.). In this case, T2 provides
such stabilisability according to l : |neighbours(drone)| = 0,

meaning that there is no edges between agents in action. Sub-
graphs from the communication state set Θk=2

δ(T ) between the
teams are different: T1 initially does not have tasks in common
(θ{a4,a5}) but the selected Trec = {a1} implies a negotiation
of one task when an agent is removed, either t1 with a4
(θ{a1,a4}) or t2 with a5 (θ{a1,a5}). On the other hand, agents
in T2 are completely independent and can be allocated to tasks
without further conflicts with other members.

Figures 4 and 5 extend the example, where both teams have
the same overall cost and k = 2. T1 provides stabilisability
with regard to l that obliges not sharing tasks between agents.
Figure 4 shows all possible states of T1 in order to accomplish
the goal, that is the communication state set represented by
Θk=2
δ(T ). The team initially does not have tasks in common

(θ{a4,a5}) but the selected Trec = {a1} implies a negotiation
of one task when an agent is removed, either t1 with a4
(θ{a1,a4}) or t2 with a5 (θ{a1,a5}). On the other hand, agents
in figure 4 have no neighbors under any circumstances, so
they are completely independent and can be allocated to tasks
without further interaction.

Proposition 1 (STF Generalisation). Any k-stabilisable team
T is also k-recoverable.

Proof. (by reducing to absurd): Be R and S the sets of all
possible recoverable and stabilisable teams assembled from
A respectively. So, ∃T ∈ (¬R ∧ S) ⇒ T is ¬¡cd, k, cr¿-
recoverable ∧ ¡cd, k, cr, l¿-stabilisable. A recoverable team has
no stabilisability constraint, so SC is the lowest restrictive con-
figuration possible where any agent is capable to communicate
with any other into the team. That is, some δ bounded by
a complete graph l = K|T | as L, so T is ¬¡cd, k, cr, L¿-
recoverable. By definition 4, k and costs are preserved, so
T → ¬LT ∧ lT . From a graph perspective, bound functions
L = (T,EL) and l = (T,El) are general graphs where T
and E represents the agent set as vertexes and the set of
communication edges. The number of edges in a complete
undirected graph is |EL| = |T |(|T | − 1) and any other graph
with T vertexes contains at least a subset of such edges
El ⊆ EL. So the contradiction emerges when @T → lt * Lt
and the generalisation is proven.

Stabilisable teams can be described as a subset of the
recoverable solution set in a TF problem. The strength of sta-
bilisability through agent networks lies in avoiding those teams
whose evolution or reconfiguration is not feasible in a practical
sense. In critical real-world scenarios, agents should be aware
not only in forming teams, but also manage interaction, avoid
conflicts, and communication overloads. These circumstances
become even more remarkable in scenarios subject to unfore-
seen events that forces agents to be reorganized.

A. Stabilisability through Agent networks

As mentioned above, stabilisability is defined from a graph-
perspective as agent networks. As graphs, there are properties
that characterize certain network organisations or topologies
suitable for task allocation algorithms with MAS. Figure 6
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Fig. 4: Network representation δ: neighbors(ax) from recoverable team T1 in figure 3.a, where two agents are connected if
agents have tasks in common. Θk=2

δ(T ) = {θ{a4,a5}, θ{a1,a4}, θ{a1,a5}, θ{a1}}

a1 a2 a3

t1 t2 t3

a4 a5 a6
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Scenario 1: θ{a5,a6}
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Scenario 2: θ{a4,a5}
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Scenario 3: θ{a2,a6}
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Scenario 4: θ{a2,a4}Θk=2
δ(T )

Fig. 5: 〈3, 2, 2, l〉-stabilisable T = {a5, a6}, Trec = {a2, a4} and l : |neighbors(ax)| = 0 from table in figure 3.b. l is the
stabilisability constraint as a naive function that forces no task sharing between agents (equivalent to graph density of the team
as 0 with no edges). Θk=2

δ(T ) = {θ{a5,a6}, θ{a4,a5}, θ{a2,a6}, θ{a2,a4}}

shows different well-known properties used in this paper to
formalize the graph function l:

• l as Density function: determines the distance between the
number of edges in the graph and the potential number
of edges. This measure is intuitive for representing how
dense or sparse is the agent network, from a full con-
nected team (equals to 1) or a complete agents isolation
(equals to 0).

• l as Clustering function: related to graph density, it is
defined as the coefficient of the number of triangles and
the number of connected triples of vertices or triads in
the graph [New03]. This measure is suited to measure
how far the graph is from being a tree (equals to 0) or a

complete graph (equals to 1).
• l as Arboricity bounding function: Albertson et al.

[AH96] introduced the concept of bounding functions for
graph families. A function b bounds graphs from above if
there is an infinite graph family where b(|VertexesG|) =
|EdgesG| holds for any graph G and b(|VH |) ≥ |EH | for
any subgraph H of G. We apply the bounding function
b(V ) = n(V −1) to represent the disjoint union of n trees,
used by Haas to characterize Nash-Williams arboricity
[Haa02].

Computing stabilisability depends on the agent graph rep-
resentation and the property to measure. Graph functions are
faster depending on different representations where algorithm
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Fig. 6: Examples of agent network from teams bounded by different ln based on different graph functions: density ld ≤ 0.5
(here, 0.43), clustering lc = 0 (tree graph), and 2-disjoint tree bounding function lb.

runtimes depend on |V | and |E|. E.g. an Adjacency Matrix
is a |A| × |A| data structure such that the element δij 6= 0 if
agents Ai and Aj are connected. Edge and adjacency lists are
other well-known representations for graphs.

To model the graph network and defining the stabilisability
condition through the graph function is a powerful tool for
approximating TF problems to more realistic scenarios. In
concrete distributed problems, teams preserve their perfor-
mance only if preserve their topology. Generally, MAS-based
algorithms for solving distributed optimisation problems orga-
nize agents on trees or pseudo-trees when an optimal solution
is needed [FPY16]. However, our approach enables team to
fit also with other graph representations, i.a. lattices, cycles,
grids, or planar graphs. Indeed, we can provide some flexibility
with regard to the desired graph representation depending on
how the stabilisation parameter has been defined. That is, how
a team is farther or closer from a concrete representation.

For a better comparison during experimentation and further
discussion, we selected the aforementioned functions assuming
that the obtained teams must perform subsequent task alloca-
tion problems with different algorithms characterized by their
agent network representation.

IV. ALGORITHM

Given a STF problem instance and an integer k, the aim is
to find all the teams T efficient w.r.t a set of tasks from a goal
G, recoverable with the minimum cost, and stabilisable w.r.t
a graph property, for all possible deprivation of k agents from
T . Our algorithm is a first approximation for solving resilient
TF problem using the DCOP framework. A DCOP is defined
by the tuple 〈A,X,D,C, λ〉 where A, X, D, and C are the
set of agents, variables, domains for variables, and constraints
as cost functions respectively, and λ is the mapping function
from agents to variables. Thus, the goal is to find a complete
variable assignment that satisfies all the cost functions and, at
the same time, such cost is minimized (or maximize as utility
functions) [FPY16]. In TF context, the domain corresponds
to the inclusion or not of an agent to a team (3 states: not
in team, in initial team, or in recovery team), each agent
only decides over its own inclusion (usually, one variable per

Fig. 7: SBB-ST based on DFS tree from distributed BnB.

agent), and the constraint set refers to the different rules: costs,
accomplishable tasks and stabilisability.

A. SBB-ST

Our algorithm, namely Synchronous Branch-and-Bound for
Stabilisable Teams, is based on SyncBB algorithm [HY97].
By the definition of Branch-and-Bound algorithm, SyncBB
and SBB-ST are complete DCOP algorithms that guarantee
the optimal solution. The main idea is the partial assignment
propagation of variables from visited to non-visited agents.
The search space in SyncBB is pruned when sub-optimal
solutions are found. Our algorithm differs from its predecessor
by expanding the search space to find both efficient and
stabilisable teams, using different agent ordering by costs.
Algorithm 1 summarizes the SBB-ST outline, and Fig. 7
depicts SBB-ST as a DFS tree in pre-order, updating the cost
at the leaf in each phase, and then returning the minimum.
According to branch-and-bound (BnB) definition, descendants
of a node can be ignored if the cost goes below or above lower
and upper bound, respectively (same with k). Essentially,
agents behave as a BnB search in a distributed fashion as
nodes, waiting for a message (line 6), and sending the output
to its neighbour (parent or children, line 29). Non-leaf agents
add partial information from parent, e.g., using vectors (lines 8,
9, 14 and 15), and the leaf check stabilisability and computes
the solution (lines 16-19). SBB-ST performs two consecutive
searches: the first one looking for an initial efficient team,
and the second one for the recovery team up to k removed



Algorithm 1 SBB-ST (SyncBB for Stabilisable Teams)

Input: A STF problem 〈A,P, f, α, h, SC〉, a goal G, and k
Output: All k-stabilisable teams

1: Let max cost ←∞, teams ← ∅, possible teams ← 3|A|

2: Let Tini ← ∅, Trec ← ∅, T ′ ← ∅,
3: Let agent mode ← EFFICIENT
4: for all agents in A do
5: while agent mode 6= FINISHED do
6: agent mode ← get message(agent from, data)
7: if agent mode = EFFICIENT then
8: Update data from current Tini and accomplished

tasks with the partial knowledge of the agent
9: Update the accumulated cost from Tini and com-

pare with max cost threshold
10: if agent has full knowledge from Tini and Tini is

efficient, costly and stabilisable then
11: agent mode ← RECOVERY
12: end if
13: else if agent mode = RECOVERY then
14: Update data from current Trec, T ′ and accom-

plished tasks with the partial knowledge of the
agent

15: Update the accumulated cost from current T ′ and
compare with max cost threshold

16: if agent has full knowledge from Tini and Trec and
T ′ is still efficient, costly and stabilisable then

17: Append [Tini, Trec] into teams
18: if accumulated cost ¡ max cost then
19: max cost ← accumulated cost
20: end if
21: end if
22: end if
23: discarded teams ← sub-optimal teams from current

agent and its BnB descendants
24: possible teams ← possible teams - discarded teams

25: if possible teams = 0 then
26: agent mode ← FINISHED
27: end if
28: Update next agent
29: send message(agent mode, next agent, data)
30: end while
31: end for
32: return teams

agents. The efficient search space is traversed to find those
initial teams able to accomplish the set of tasks in G. Agents
send the partial team assignment from parents to children,
where each agent concatenates the information with its local
knowledge, i.e., the variable assignment, the accumulated cost,
the task accomplishment, and the team network representation.
Once the leaf agent possesses the full knowledge referring the
initial team assignment, it computes the team efficiency and
the stabilisability according to l.

The recovery search starts when an efficient team is found.
During this search, agents are revisited and its information
updated depending on their previous assignment: an agent can
be assigned as recovery agent only if it is not member of the
efficient team. Agents that are members of the efficient team
can only be deprived as part of Trem. Search space is pruned
in those sub-trees where Trem > k. Thus, all possible team
states T ′ = T \Trem∪Trec are found. Similarly, once the leaf
possesses the full knowledge referring both initial and recovery
assignments, it checks if the efficiency and the stabilisability
is still conserved. A team assignment is solution when all
combinations of T ∪ T ′ satisfy all constraints.

Figure 8 shows an example of the search space as a binary
tree and how SSB-ST traverses it during recovering phase. In
this example a4 is the leaf agent in the efficient phase. Once
a4 assigns the value of variable that controls and checks the
efficiency, recovery mode starts with a1 as the highest priority
agent. a1 is part of the initial team, so it updates its partial
assignment as a deprived agent from the initial team or not.
Then, a1 updates the accumulated cost and accomplishable
values, according to the assignment, and sends the information
to a3 as the next priority agent. a3 was not assigned as the
initial team, so it can be part of the recovery team. Thus, it
computes the partial assignment as an agent in the recovery
team or not in the same way. Given k = 1 means that only
1 agent can be deprived form the initial team, so only a1
or a4 can be assigned as removed. If a potential agent to
be deprived exceeds k then the solution is sub-optimal and
the sub-tree is pruned. Similarly, the sub-tree is pruned if the
accumulated cost exceeds the threshold of previously found
solutions. The leaf agent during recovery team a4 receives
the recovery vector, fulfils the partial assignment, and checks
all the constraints. In this example, the 1-stabilisable team
[1, 0, 2, 1] satisfies the problem with a total cost of 7.

Concerning completeness, SBB-ST as a search algorithm
based on DFS, where agents are ordered based on heuristics
attached to different agent costs, functions, or constraints, and
the tree height is determined by the number of agents. By
definition, DFS is complete if the search tree is finite, so it will
come up with a solution [RNC+96]. In the TF optimization
model, all Resilient constraints attached to k are defined as
hard constraints (robustness, recoverability, and stabilisability),
so they must be satisfied by any feasible solution to the model
[FPY16]. Said that, SBB-ST completeness over a STF problem
is preserved.

The stabilisability constraint has some implications during
search pruning: In the same way that the sub-tree search
is pruned when the k constraint is no longer satisfied, the
recovery search phase can be omitted when the initial partial
team does not satisfy the graph bounding constraint. According
to definition 6, a solution must satisfy such constraint for all
possible graphs emerging from such team. In other words, a
team is not a solution when there is only one configuration
of agents from such team that does not meet the stabilisation
constraint. In this way, when an initial team is sub-optimal, all
its subsequent possible configurations are also sub-optimal.



ai αi f(ai) h(ai)

a1 {t1} 4 4
a2 {t2} 3 2
a3 {t1, t2} 2 2
a4 {t2} 1 1

a4

a1

a3

a2

a4 a4

a2

a4 a4

a3

a2

a4 a4

a2

a4 a4

...

↙ ai ∈ T?↘

⇓ Recovery mode for k = 1

↙ ai ∈ T ′?↘

↙ ai ∈ Trec?↘

[1, 2, 2, 1][2, 3][1, 0, 2, 1][2, 2][1, 2, 0, 1][1, 2][1, 0, 0, 1][1, 1][0, 2, 2, 1][1, 3][0,0,2,1][1,2][0, 2, 0, 1][0, 2][0, 0, 0, 1][0, 1]
[1, 2, 2, 0][2, 2][1,0,2,0][2,1][1, 2, 0, 0][1, 1][1, 0, 0, 0][1, 0] unfeasible due to deprived > k

t[1, 0, 0, 1], r[1, ?, ?, 1], d[1, ?, ?, 1], a[1, 1] cost=5 t[1, 0, 0, 0], ..., a[1, 0] cost=4

r[1, ?, ?, 1], d[1, ?, ?, 1], a[1, 1] cost=5 r[1, ?, ?, 1], d[0, ?, ?, 1], a[0, 1]

r[1, ?, 2, 1], d[1, ?, 2, 1], a[2, 2] cost=7 r[1, ?, 2, 1], d[0, ?, 2, 1], a[1, 2]

r[1, 0, 2, 1] cost=7 r[1, 0, 2, 1] cost=7

a4 ∈ T ′
a4 /∈ T ′

d, a when

Fig. 8: Recovery phase example. Variable domain is defined by 0 =no team assigned, 1 =in initial team, 2 =in recovery
team. Assignment data vectors for the initial [t]eam T ′, [r]ecovery team Treco, T ′ with agents [d]eprived according to k, and
[a]ccomplished tasks by agents in T ′ according the table. Solution: 〈5, 1, 2〉-recoverable T = {a1, a4}, Trec = {a3} w.r.t. G.

1) Algorithm Complexity: SBB-ST is based on Syn-
chronous Branch and Bound algorithm (SyncBB), a well-
known algorithm for DCOPs [HY97]. Operations from DCOP
algorithms grow exponentially to compute solutions, either
by the domain size or the number of agents, among others
[FPY16].

Proposition 2. k-STF problem is NP-hard

DCOP and TF are NP-hard problems by definition as
optimisation problems, but NP-complete as decision problems
(that is, if a solution exists). As explained in Sec. III, STF
is a generalisation of RTF. Using k as a parameter, and
transforming k-STF onto a DCOP problem proves that the
complexity remains [MSTY03], [OSC+15], [DSOI18].

Proposition 3. SBB-ST performs 3|A|S operations, where S
is the number of operations from O(l(|A|)).

SyncBB performs d|A| operations [HY97], where d is the
size of the largest domain in the DCOP. In TF, domain
corresponds to the assignment of an agent into a team (initial,
recovery or none). The leaf agent in SBB-ST computes all
possible assignments and checks the stabilisability through l.
S is attached to the stabilisability complexity and performance
depends on both the graph representation and the graph
function to be applied. From the graph properties defined on
figure 6, density and arboricity functions are O(|T |) to count
the number of edges if δ is represented as an adjacency list
but O(|T |2) as adjacency matrix, whilst clustering is O(|T |2.8)
if we use the Strassen algorithm to calculate the number of
triangles in the team network.

Proposition 4. If k = 0, SBB-ST performs 2|A|S operations.

As explained above, in the efficient phase agents share the

partial assignment for the initial team, so agents decide if they
are into the initial team or not. Further, the recovery search
tree is pruned by the k-constraint, so sub-trees that have more
than k agents removed from are not visited.

V. EXPERIMENTS

Our experiments are focused on testing the following hy-
potheses:
• To solve Resilient Team Formation problem requires less

computation effort when the obtained team is stabilisable
and recoverable or robust rather than just recoverable or
robust.

• Given a subsequent Task Allocation problem to be solved
by an agent team obtained from a previous solved TF
problem, its resolution can be relaxed and its computa-
tional effort is reduced when the team has been defined as
a stabilisable team, rather than just a recoverable or robust
team, assuming a set of possible emerging dynamics
concerning inter-agent communication resulting topology
and agent deprivation.

Figure 9 sketches the experimentation process. First exper-
iment uses SBB-ST to obtain recoverable teams (RTF) ac-
cording to Demirovic and Okimoto proposals and stabilisable
teams (STF) [OSC+15], [DSOI18]. As explained in Section
III, RTF teams are equivalent to STF with no stabilisation
constraint. Second experiment solve the graph colouring prob-
lem as TA problem to compare the performance between both
team sets using different well-known DCOP algorithms. The
constant k represents the dynamic of agent deprivation, so the
second experiment include all the scenarios emerging from an
obtained team where 0 <= n <= k number of agents are not
available to solve the problem. From the figure example, a 2-
resilient team with 5 agents emerges different TA problems,



Fig. 9: Experiments configuration: First experiment consists on solving the STF problems given A, k, tasks, costs, allocations,
network, and graph function with both allocation and network maps being different and random (allocate a team to the goal
with initial and recovery sub-teams). Second experiment consists on measure performance from all possible TA problems as
graph colouring problems for these teams (allocate agents to tasks individually, with resulting communication constraints)
obtained on experiment 1.

depending on how many agents from the initial team (0, 1, or
2) cannot be part of the allocation.

In a nutshell, we aim to compare both computation time and
performance from teams obtained between our proposal and
its predecessors at different levels: first, the allocation between
a team and a mission as a set of tasks. Second, the allocation
between team members and single tasks. Experimentation
also aims to show how teams can be assembled according
to some topology criteria. Accordingly, we aim to observe
how such prior criteria support teams to relax distributed
task allocation problems and improves team performance,
assuming that teams are highly dependent to their topology.

Concerning the experiment setup, we considered TF in-
stances from 5 to 25 agents with a goal of 10 tasks, with
100 instances per agent set size. This allows us to compare
run times in the optimal version of Demirovic and Okimoto.
Larger instances have been discarded because the incorpora-
tion of heuristics to improve scalability but to the detriment
of solution optimally is outside the scope of our study.
Accomplished tasks per agent αa are generated uniformly
at random from 1 to 8 tasks [OSC+15], and costs f and h
are equal according to the experiments from Demirovic et
al. [DSOI18]. For our experiments, DFS ordering for BnB
solving is also random. Regarding stabilisability configuration
candidates, δ = |A| × |A| is the Adjacency Matrix3 from
α, and l is defined from different graph functions described

3For simplicity, non-directed/weighted graphs are assumed in δ.

in Sec. III.1. A set of discrete threshold values for l were
selected: 0.05, 0.4 and 0.7 for density and clustering functions
[Gd08], and {3,2,1}-disjoint tree union bounding function for
arboricity [Haa02]. We compared our proposal (STF) with
its predecessors from Demirovic et al. and Okimoto et al.
[OSC+15], [DSOI18] works (RTF), where no stabilisability
configuration is applied. The number of instances on the
second experiment is equal to the number of teams obtained
per instance on first experiment, plus the number of teams
that can be assembled according to k deprivation. This tends
to
∑2
k=0 100

(|T |
k

)
where 3 <= |T | <= |A|. For example, a

solved k = 2 instance provides one team possesses as many
configurations or scenarios as possible combinations of teams
with 0, 1 or 2 removed agents (see figures 4 and 5), resulted
on 1003 instances per stabilisable configuration approximately.
Tests were performed on an Intel Xeon 6230 (20 cores@2.1
GHz, 32GB RAM). To compute both recoverable and stabilis-
able solutions, we developed SBB-TF algorithm using JADE,
a Java framework for MAS deployment [BCG07]. For TA
problem simulation and DCOP benchmark, we used FRODO,
a Java framework for distributed combinatorial optimisation
[LOS09].

A. Time performance comparison

SBB-ST found both recoverable and stabilisable solutions
from generated TF instances. Figure 10 summarizes RTF time
performance (red line) against different STF configurations.



Fig. 10: Average and SD results from TF instances with 5-
25 agents in milliseconds (100 instances per agent set size).
Time performance is compared between recovery teams and
stabilisable teams with different network configurations.

Overall, times obtained by STF with low values are signifi-
cantly improved as opposed to RTF. Regarding k-parameter
implications, for each feasible team T, one needs to consider
every possible removal of k agents and compute its cost and
stabilisability. The number of possible T ′ combinations is
exponential with respect to k so computing teams remains ex-
pensive. Demirovic et al. [DSOI18] defined a set of heuristics
in his proposal to obtain a drop in the number of operations at
the expense of losing the completeness. SBB-ST shows how
such drop can be improved as a complete algorithm if the
stabilisability computation remains inexpensive.

For our experiments, DFS ordering for BnB solving are ran-
dom in order to obtain and discuss certain behaviours related
with the search pruning based on constraint satisfaction. Given
the same timeout for solving instances, the recovery approach
is not capable to solve ¿19-agent for k=1 and ¿18-agent for
k=2 instances respectively, whilst the stabilisable constraint
allows the resolution of larger instances. This phenomenon is
caused by the search space pruning attached to stabilisation
constraint when it is more restrictive than the recovery cost
minimization constraint. Stabilisability with bounding func-
tions near to sparse graphs relaxes the search regardless the
topology, to such an extent that graphs 1-connected graphs and
less (from unconnected sparse graphs to tree graphs) greatly
prune the recovery phase, which practically halves the height
of the DFS tree. In combination with this, the constraints of
cost and especially k allow to reduce the height of the DFS tree
during the recovery phase (k = 0 prunes the recovery search
in the same fashion because there is no recovery team). As k
grows, the more the tree is traversed in height, so it is inferred
that the graph function works as a maximum depth of the DFS
tree based on the connectivity of the active agents from both

sub-teams. This limit is exceeded only when a solution has
been found, since it is the last agent in the hierarchy that
has the complete assignment. Therefore, we can state that the
pruning of the search space is inversely proportional to the
connectivity attached to the graph function.

This behaviour has some implications regarding scalability,
where graph functions reduce the exponential time growing
attached to k in a greater or lesser extent, up to several
units of magnitude for most restrictive configurations. As
expected, time performance and scalability are deteriorated
as bound restrictions from stabilisability get relaxed. This is
because the computation that is required for obtaining the
number of edges or the number of triangles from δ(T ). The
use of adjacency lists for graph representation improves the
computation complexity (O(|T |)). Another solution for this
in larger instances is to obtain such values offline, or the
application of heuristics at the expense of guaranteeing the
optimal solution. Overall, performance on larger problems
becomes significantly better where high connected teams are
not comprised by a large number of disjoint trees or preserve
a low graph connectivity.

Discussing about these results, this experiment aims to com-
pare STF model with its predecessors by Demirovic et al. and
Okimoto et al. [OSC+15], [DSOI18] in order to evidence the
issues attached to the scalability and the high dimensionality
of the problem. For this reason, we consider that the most
legitimate way to conduct the first experiment was to replicate
under the same conditions as its predecessors, within the
scope of our resources. Assuming that generated instances
have a random component, they are generated according to the
literature and have the same restrictions, so the results are legit
and comparable. One aspect that should not be ignored in these
problems is obtaining an adequate solution (optimal or not)
in a reasonable time. Once the usefulness of the organisation
between agents through stabilisation is evidenced, the next
step could be the study and implementation of heuristics and
asynchronous computing capable to obtain faster and even
more scalable solutions.

B. Stabilisability impact on Team Task Allocation

This experiment shows how RTF and STF teams manage
their inter-agent organisation on subsequent Task Allocation
instances. To do so, we modelled each team obtained from the
previous experiment as a DCOP where the agents must allocate
the tasks individually from G. Concretely, teams solve the
graph colouring problem built from the constraint graph based
on agent capabilities from αT , and δ(T ) of selected teams.
Agents must allocate tasks as colours where connected agents
represent a task in common. A solution is found when a subset
of agents is coloured differently with all tasks. Given a team,
this experiment considers all possible scenarios according to
k representing the dynamic of agent deprivation and recovery
agents entering into action. Thus, each TF instance generates,
in turn, as many TA instances as the number of teams found
plus their different team states T ′ according to k possible
deprived agents.



Fig. 11: Medians and confidence intervals obtained from task allocation problems solved by obtained RTF and STF teams w.r.t
tasks from instances with 3-24 agents. The number of instances per graph line tend to 1003, according to all possible team
scenarios attached to k values. Line colours represent different bounding values for each stabilisability configuration: 0.05, 0.4
and 0.7 for density and clustering, 1,2,3-disjoint tree for arboricity, and non-stabilisable teams (recovery).



We selected a set of well-known DCOP algorithms from
the literature differentiated by their agent organisation: DPOP
as depth-first search pseudo-tree ordering [PF05a], Max-Sum
as a factor graph (tasks-agents bipartite graph) [FRPJ08], and
MGM as a constraint graph [MPT04]. These algorithms are
implemented by FRODO framework for benchmarking and
allows a good visualisation on how a prior team restriction on
communication relaxes the computation of TA problems based
on DCOP problems.

Figure 11 shows the measures of solved graph colouring
instances from obtained RTF and STF teams. The red line
represents recovery teams from Demirovic et al. where no
stabilisation configuration was considered on experiment 1.
Blue, orange, and green lines represent stabilisable teams
with concrete configurations based on the graph properties
described in Section III.1. All teams solved their respective
TA instances using the 3 DCOP algorithms.

Meeting our expectations, stabilisability fulfils the relax-
ation of intra-team organisation. Regardless of k removed
agents and the inclusion of any agent from Trec, teams that
are bounded by any stabilisability configuration also bounds
computation and communication effort. Recoverable teams
in figure 11 shows the medians of different measures from
the candidates subject to grow exponentially according to its
operation: DPOP complexity grows exponentially with regard
to the message size depending on the induced width of the
pseudo-tree [PF05a], while Max-Sum and MGM in the number
of messages depending on the number of agents, neighbours,
and running iterations needed to solve the instance [MPT04],
[FRPJ08].

With no exception, worst results arise from recoverable
teams, whilst stabilisable teams not only improve the char-
acteristics of these algorithms that grow exponentially over
time, but also lowers the magnitude scale in some cases. This
behaviour is expected when we prioritize in those teams whose
graph representation allows a relaxation of the most expensive
computation between DCOP agents, either the exchange/size
of messages, their reorganization in certain structures such
as pseudo-trees, or loops removal, among others. Our results
show how stabilisability based on density and clustering
reduce the average computation in a same fashion: for a
bound of 0.7 on density and clustering, both message size
and number decrease with regard to recovery instances with
all DCOP algorithms. For bounds 0.4 and 0.05 message size
grow for DPOP becomes linear and the number of exchange
messages between agents is greatly reduced. We observe that
teams tend to possess disconnected communication graphs
or even isolated agents that they do not need to negotiate
with tasks in common, so the assignment becomes more
trivial as its configuration gets more restrictive. Eventually, the
same problem can be solved by a 24-agent recoverable team
that needs 10 megabytes of memory per agent and tens of
thousands of messages to compute a solution, or a stabilisable
team with the same number of agents but with no more than 10
kilobytes of memory per agent and less than 1000 messages.
Regarding arboricity, we observe that all bounds transform the

exponential growing of all algorithms to linear. That is because
team connectivity can be characterized through their number of
possible trees that can be partitioned. In other words, n-TREE
connected teams tend to be n-edge-connected. Intuitively, same
configurations impact differently on the DCOP candidates.
Restrictive stabilisation based on clustering and arboricity is
useful for those algorithms where agents are connected as trees
or pseudo-trees, but including inefficient tree shapes, such as
the tree width for DPOP. However, the cases were marginal
and the computation effort for these teams were compensated
with the fact that their agent network is practically a tree, so
the algorithm execution is relaxed because costly operations
such as agent tree ordering and loops removal can be obviated.
Indeed, having algorithms where communications loops are
avoided involve a direct impact in their optimally is even more
powerful, such as the case of restrictive stabilisation for the
Max-Sum family. By definition, Max-Sum is an incomplete
algorithm but complete if there are no loops in the network
graph [FRPJ08]. Thus, all TA instances solved with 1-TREE
Max-Sum teams were optimal.

We notice that k values has some implications on resulting
team connectivity. As k grows, teams require a larger amount
of recovery agents to maintain the stabilisation bound with
agents into action. When resulted teams has no recovery
agents, k is directly linked with the onset of k-cliques, mean-
ing that agents must be fully adjacent in some degree to ensure
the affordability of tasks. As the number of recovery agents
grows into the team, cliques on ongoing agents disappear and
the connectivity is reduced. Consequently, it becomes difficult
or even unfeasible to find stabilisable teams with a larger k
and low recovery subset of agents. On the other hand, relaxing
stabilisation criteria allows teams with a greater connectivity
but at the expense of SBB-ST performance.

Discussing on this experiment and representing instances
as task allocation problems, we decided to use the DCOP
formalism because is a well-known framework for distributed
problem solving, and the proximity of TF to related problems
such as coalition structure generation [RMWJ15], [CFMR14].
DCOP literature is extensive and can be classified on different
categories: graph representation, methodology, completeness,
and algorithm families, among others. We selected the most
representative candidates given the taxonomy from Fioretto
et al. [FPY16] with regard to their graph classification. In
order to amplify the impact of our results, we selected the
candidates not exclusively by its network characterisation, but
also for their popularity and further variants in the literature.
After conducting several experiments with some inherited
and novel algorithms, results seem to be correlated with
their predecessors, because of the fact that experimentation
is focused on agent team structure/topology, instead of solely
improving the performance of concrete DCOP algorithms.
Accordingly, we avoid developing novel inherited algorithms
on FRODO due to this and the enormous effort to be required
to implement them from scratch according to our resources.

In any case, results confirm that anticipate decisions regard-
ing intra-team organisation are useful to save resources and



minimize the effort against unforeseen dynamics. Restrictive
stabilisation is suited for scenarios where agent communi-
cation is expected to be prohibitive, so agent autonomy is
guaranteed. In fact, STF gives the possibility of custom
network configurations, e.g., cycles, lattices, or planar graphs.

VI. DISCUSSION

Team formation is a suitable starting point for modelling
agent-based distributed problems but is far from a profound
representation due to its abstraction. Resilience on MAS
not only extends these problems, but also approaches more
real scenarios capable of representing their dynamics and
(unforeseen) events. While definitions related with resilience,
stabilization and other terms are not exclusive to MAS, we
want to clarify that the terminology used is inherited to
the research context and the mentioned papers we work on,
without pretending to overshadow their use in other different
contexts.

As far as we are concerned, the way that resilience has
developed in the TF literature is valuable but not feasible in a
practical sense. Forming teams, whether resilient or not, is a
NP problem, so the premise that a instance must be resolved
in a reasonable time should not be ignored. Secondly, comple-
menting the different resilient characteristics are not exempt
from conflicts, so the balancing of these must be considered
when applying the model. In other words, it is important
to manage when robustness (k), recoverability (Treco), or
stabilisability (agent network) need to be enhanced depending
on the definition, requirements, and priorities of the problem,
while seeking the best possible cost and/or performance. Our
intention was to design a cross feature, i.e. to model resilience
with a variable capable to be managed in such a way that does
not complicate the aforementioned balancing issue.

Team Formation is an interesting approach in MAS plan-
ning, but it is even more interesting when put in context with
other related problems such as task allocation. As explained
before, forming agent teams or coalitions are a subset of
distributed problem solving, but in more realistic scenarios
the final objective is allocating resources/tasks to perform. To
the extent of our understanding, DCOPs are suitable to handle
these problems but literature tends to focus directly on the
allocation, obviating the benefits of previous team formation.

Our motivation is based on the hypothesis that agents
comprised as a resilient team are more capable to reorga-
nize/reallocate resources more agile than agents that were not
previously organized. We intend to study in this research how
contextualize the resilient team formation is valuable to solve
other distributed problems. To do so, our approach is based
on divide-and-conquer strategy, in such a way that if an event
occurs, it is more productive and generates less impact rethink
part of the problem than the whole instance. For this reason,
we decided to perform the aforementioned interconnected
experiments: firstly, we aimed to solve the inherited time
performance issue from recoverable team search. Second, we
studied how stabilisable team search relaxes the subsequent
task allocation problem regardless its dynamics. Furthermore,

our hypothesis includes the fact that resilience can be ex-
tended considering not only the agent resources, but also its
interaction and dependencies with other agents. The study of
the agent network from a graph-theory perspective has been
done previously and suits with the definition of stabilisability
[PF05b], [Gd08], [CRXH10]. Thus, this definition is useful to
cover both sides of our hypothesis.

Whilst there is room for interpreting our results, they must
not be considered in a absolutely way. RTF and STF have been
implemented using branch-and-bound solvers, with JADE as
our agent-based software framework, and FRODO for Task Al-
location through DCOPs as benchmark. As expected, obtained
data on larger instances and relaxed configurations reflected
the same issues with regard to exceeding time execution, so we
obviated them. Moreover, we wanted to observe how the graph
function allowed us to find the desired teams as close as possi-
ble to trees without losing the perspective on the performance.
Accordingly, selected values for stabilisability configurations
support us to observe the connectivity implications during the
SBB-ST operation. To the extent of our understanding, SBB-
ST performance worsens more when there is an instance with
high connectivity than solving a large instance. So, we can
deduce that depending on how dense or sparse is the agent
set in our TF problem, we can apply in advance the best data
structure and graph algorithms for calculating stabilisability
in a reliable way. Regarding the benchmarking on the second
experiment, although we are aware of the vast list of current
DCOP algorithms in the literature, we decided to base our
experimentation and results on those provided by the FRODO
software for comparison. After an iteration with different more
recent algorithms, we observed that the results were correlated
with their predecessors since, although these proposals provide
significant improvements, they retain their dependence on the
topology of the team of agents. It is important to emphasize
that our approach aims to show the importance of establishing
a previous configuration in a distributed team before entering
a dynamic environment, instead of simply improving some
specific algorithms. That is why we consider that DCOPs are a
suitable framework for this problem and with a very extensive
real-world application.

In any case, our results can represent a first approximation
of our expectations and trends in further experiments. We
consider that stabilisation is a useful tool to quickly solve
resilient TF problems if it is enough restrictive. With SBB-
ST we fulfil the purpose of comparing our proposal with its
predecessors. It is important to note that the study of resilience
on these problems with larger instances is still pending in
the literature. To resolve stabilisability with different data
structures based on agent connectivity, include other graph
properties based on desired networks on teams, and to apply
techniques for extending the experiment with larger instances
are suggestions to incorporate a different analysis.

VII. RELATED WORK

Schwind et al. [SMI+16], [SOI+13] formalized Re-
silience for constraint-based dynamic systems with agents. In



[SMI+16], Stabilisability is described as a feature distinguish-
able from resilience, where it is just a function related to the
system manager/controller. Indeed, Panerati et al. [PSZ+18]
modelled resilience for Hidden Markov models excluding
stabilisability. In this paper, Stabilisability is modelled not
only as an addition to TF problems, but also as a valuable
component for resilient systems where the team state is con-
sidered. This description is in accordance with the definition of
self-stabilisation by Dijkstra [Dij74]. Alberola et al. [AJG13]
contribution is related with our definition of Stabilisability,
where they model transition costs for MAS reorganisation.
They propose an agent architecture where costs are attached
to modifications on roles and capabilities to provide a set of
services. In our context, Stabilisability is defined from a graph-
based perspective to guarantee teams performance through
agent network topologies. Gaston et al. [Gd08] define diversity
support as the ratio of possible skill combinations supported
by an agent communication graph to allocate the largest set
of tasks. From this definition, the paper conducts an study
of how diversity support depends on the graph network in
dynamic team formation. Faye et al. [FAMO14] introduced
Stabilisation on Coalition Formation Problems as a Markov
Decision Process, where coalitions were aimed to maintain
persistent under certain dynamics, including network topol-
ogy change, task evolution and stochastic events. This work
assumes the impossibility to devise an efficient agent coordi-
nation based only on initial knowledge given the unpredictable
availability from agents due to dynamic behaviours, whilst our
contribution aims to prove how such knowledge, being mod-
elled as a distributed constrained problem, can preserve both
efficiency and error-tolerant organisation of agents regardless
communication dynamics. Later, TF problem were defined as
a bi-objective constraint problem, where both overall cost and
k are the values to optimize [OSC+15]. Moreover, TF and
similar problems such as Coalition Structure are suited to be
faced by the DCOP framework in an online manner suits to
face these complex problems [UIY+10], [FPY16].

VIII. CONCLUSIONS

This paper deploys and improves the resilience of TF prob-
lems extending its implications to task allocation problems
by modelling STF. Our main contribution is to demonstrate
how stabilisable teams are able to be robust, recoverable, and
minimize the intra-team organisation effort that involves de-
privation and inclusion of agents, assuring resilience in decen-
tralized systems. Such organisation is modelled from the agent
communication point of view, where STF generalizes RTF
model from by including the stabilisability configuration. We
performed a set of experiments with different configurations
using well-known graph properties. In comparison with recov-
erable teams, our results confirm that stabilisability is capable
to reduce the computation on forming teams by in several
units of magnitude with the most restrictive configurations. At
the same time, we show that stabilisable teams reduce and
bound the computation and communication attached to inter-
agent organisation when such teams must face subsequent

task allocation problems. However, relaxed configurations in
conjunction with complex graph functions can be counterpro-
ductive for larger instances. To mitigate it, low-complexity
functions and offline methods are considered. To compare
performance and team organisation from both models, we
designed SBB-ST, a branch-and-bound algorithm based on
DCOP framework. Stabilisability contributes to resilient TF
problems reducing their computation significantly and, at the
same time, anticipating team decisions to save resources and
minimize efforts during team organisation in dynamic scenar-
ios. We have been aware of several implications on our study
and our results have allowed us to not discard our hypothesis
and let us continue with further realistic experimentation,
from simulation frameworks to ongoing research work with
embedded and IoT devices.

Against the approaches given considering resistance and
recoverability as the determinant properties for resilience,
stabilisability is the only one able to provide a model for inter-
agent interaction. As we demonstrated, this improves resilience
in concrete MAS scenarios, in such a way that the resistance
and reaction against unforeseen events are reinforced.

The strength of stabilisability through agent networks so-
journs in avoiding those teams whose evolution or reconfigura-
tion is not feasible in a practical sense. Thus, agents are aware
in forming teams and manage better the inter-agent interaction
through avoiding conflicts and communication overloads.

IX. FUTURE WORK

Experiments in simulated real-world scenarios will be
conducted to test stabilisability in dynamic environments.
Concretely, we will use RoboCup Rescue Agent Simulation
platform to assess stabilisability with different task allocation
models from literature. Further, we will extend our exper-
iments with users’ inclusion in such environments, where
dynamics arises from perturbations caused by unexpected
events from human interaction with the system. This approach
is quite interesting in disaster response, human-agent planning,
autonomous collective driving, and other problems related to
ubiquitous computing and human-agent collectives [JMN+14].
In addition, we plan to improve the performance and scalabil-
ity of team formation problems through the study of different
approaches based on heuristics, dynamic programming, and
parallelisation, inter alia.

Our intention is also to extend stabilisability as a soft or
stochastic constraint, study the application of weighted, di-
rected, and other graph properties. Modelling stabilisability to
other resilient systems or introducing the resilience framework
to other problems are also proposals for further work, e.g.,
coalition structure generation, swarm intelligence, distributed
machine learning, or planning, among others.
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[CFMR14] Jesús Cerquides, Alessandro Farinelli, Pedro Meseguer, and
Sarvapali D. Ramchurn. A tutorial on optimization for multi-
agent systems. Comput. J., 57(6):799–824, 2014.

[COSI15] Maxime Clement, Tenda Okimoto, Nicolas Schwind, and Kat-
sumi Inoue. Finding resilient solutions for dynamic multi-
objective constraint optimization problems. ICAART, pages 509–
516, 2015.

[Cou02] D. L. Coutuj. How resilience works. Harvard Business Review,
80(5):46–56, 2002.

[CRXH10] Shanjun Cheng, Anita Raja, Jiang Xie, and Ivan Howitt. Dlb-
sdpop: A multiagent pseudo-tree repair algorithm for load bal-
ancing in wlans. Proceedings - 2010 IEEE/WIC/ACM Interna-
tional Conference on Intelligent Agent Technology, IAT 2010,
2:311–318, 2010.

[Die17] Thomas G. Dietterich. Steps toward robust artificial intelligence.
AI Magazine, 38(3):3–24, 2017.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of dis-
tributed control. Communications of the ACM, 17(11):643–644,
1974.

[DSOI18] Emir Demirovic, Nicolas Schwind, Tenda Okimoto, and Kat-
sumi Inoue. Recoverable team formation: Building teams
resilient to change. AAMAS, pages 1362–1370, 2018.

[FAMO14] P. F. Faye, S. Aknine, Sene M., and Sheory O. Stabilizing
agent’s interactions in dynamic contexts. 2014 IEEE 28th
International Conference on Advanced Information Networking
and Applications, pages 925–932, 2014.

[FPY16] Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. Dis-
tributed constraint optimization problems and applications: A
survey. CoRR, abs/1602.06347, 2016.

[FRPJ08] Alessandro Farinelli, Alex Rogers, Adrian Petcu, and
Nicholas R. Jennings. Decentralised coordination of low-
power embedded devices using the max-sum algorithm.
AAMAS, pages 639–646, 2008.

[Gd08] Matthew E. Gaston and Marie desJardins. The effect of network
structure on dynamic team formation in multi-agent systems.
Computational Intelligence, 24(2):122–157, 2008.

[Haa02] Ruth Haas. Characterizations of arboricity of graphs. Ars
Combinatorica, 63, 2002.

[Hol73] C. S. Holling. Resilience and stability of ecological systems.
Annual Review of Ecology and Systematics, 4(1):1–23, 1973.

[HY97] Katsutoshi Hirayama and Makoto Yokoo. Distributed partial
constraint satisfaction problem. CP, 1330:222–236, 1997.

[JMN+14] N. R. Jennings, L. Moreau, D. Nicholson, S. Ramchurn,
S. Roberts, T. Rodden, and A. Rogers. Human-agent collectives.
Commun. ACM, 57(12):80–88, 2014.

[JZW13] Yichuan Jiang, Yifeng Zhou, and Wanyuan Wang. Task alloca-
tion for undependable multiagent systems in social networks.
IEEE Transactions Parallel Distributed Systems, 24(8):1671–
1681, 2013.

[LAP+10] Patricia H. Longstaff, Nicholas J. Armstrong, Keli Perrin, Whit-
ney May Parker, and Matthew A. Hidek. Building resilient com-
munities: A preliminary framework for assessment. Homeland
Security Affairs, 6(3):1–23, 2010.
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