Complexity of Existential Positive First-Order Logic

Manuel Bodirsky, Miki Hermann

LIX (UMR CNRS 7161), École Polytechnique, 91128 Palaiseau, France {bodirsky, hermann}@lix.polytechnique.fr

> Florian Richoux* JFLI, CNRS - University of Tokyo, Japan richoux@jfli.itc.u-tokyo.ac.jp

Abstract

Let Γ be a (not necessarily finite) structure with a finite relational signature. We prove that deciding whether a given existential positive sentence holds in Γ is in LOGSPACE or complete for the class $CSP(\Gamma)_{NP}$ under deterministic polynomial-time many-one reductions. Here, $CSP(\Gamma)_{NP}$ is the class of problems that can be reduced to the *constraint satisfaction problem* of Γ under *non-deterministic* polynomial-time many-one reductions.

Key words: Computational Complexity, Existential Positive First-Order Logic, Constraint Satisfaction Problems

1 Introduction

We study the computational complexity of the following class of computational problems. Let Γ be a structure with finite or infinite domain and with a finite relational signature. The model-checking problem for existential positive first-order logic, parametrized by Γ , is the following problem.

Problem: $ExPos(\Gamma)$ *Input:* An existential positive first-order sentence Φ . *Question:* Does Γ satisfy Φ ?

Existential positive first-order formula over Γ are first-order formulas without universal quantifiers, equalities, and negation symbols, and formally defined as follows:

- if R is a relation symbol of a relation from Γ with arity k and x_1, \ldots, x_k are (not necessarily distinct) variables, then $R(x_1, \ldots, x_k)$ is an existential positive first-order formula (such formulas are called *atomic*);
- if φ and ψ are existential positive first-order formulas, then $\varphi \wedge \psi$ and $\varphi \vee \psi$ are existential positive first-order formulas;
- if φ is an existential positive first-order formula with a free variable x then $\exists x.\varphi$ is an existential positive first-order formula.

^{*}This work was done during the PhD studies of the third author at École Polytechnique.

An existential positive first-order sentence is an existential positive first-order formula without free variables.

Note that we do not allow the equality symbol in the existential positive sentences; this only makes our results stronger, since one might always add a relation symbol = for the equality relation to the signature of Γ to obtain the result for the case where the equality symbol is allowed. Also note that adding a symbol for equality to Γ might change the complexity of $ExPOS(\Gamma)$. Consider for example $\Gamma := (\mathbb{N}; \neq)$; here, $ExPOS(\Gamma)$ can be reduced to the Boolean formula evaluation problem (which is known to be in LOGSPACE) as follows: atomic formulas in Φ of the form $x \neq y$ are replaced by *true*, and atomic formulas of the form $x \neq x$ are replaced by *false*. The resulting Boolean formula is equivalent to true if and only if Φ is true in Γ . However, the problem $ExPOS(\Gamma')$ for $\Gamma' := (\mathbb{N}; \neq, =)$ is NP-complete. Similar examples exist over finite domains.

The constraint satisfaction problem $\text{CSP}(\Gamma)$ for Γ is defined similarly, but its input consists of a primitive positive sentence, that is, a existential positive sentence without disjunctions. Constraint satisfaction problems frequently appear in many areas of computer science, and have attracted a lot of attention, in particular in combinatorics, artificial intelligence, finite model theory and universal algebra; we refer to the recent collection of survey articles on this subject [1]. The class of constraint satisfaction problems for infinite structures Γ is a rich class of problems; it can be shown that for every computational problem there exists a relational structure Γ such that $\text{CSP}(\Gamma)$ is equivalent to that problem under polynomial-time Turing reductions [2].

In this paper, we show that the complexity classification for existential positive first-order sentences over infinite structures can be reduced to the complexity classification for constraint satisfaction problems. For finite structures Γ , our result implies that $EXPOS(\Gamma)$ is in LOGSPACE or NP-complete. The LOGSPACEsolvable cases of $EXPOS(\Gamma)$ are in this case precisely those relational structures Γ with an element *a* such that all non-empty relations in Γ contain the tuple (a, \ldots, a) ; in this case, $EXPOS(\Gamma)$ is called *a-valid*. Interestingly, this is no longer true for infinite structures Γ . To see this, consider again the structure $\Gamma :=$ $(\mathbb{N}; \neq)$, which is clearly not *a*-valid, but in LOGSPACE as we have noticed above.

A universal-algebraic study of the model-checking problem for finite structures Γ and various other syntactic restrictions of first-order logic (for instance positive first-order logic) can be found in [9].

A preliminary version of this article appeared in [3]. The present version differs in that the main proof has been simplified and now also works without the relation symbol for equality; moreover, Proposition 3 and Section 4 have been added.

2 Main Result

We write $L \leq_m L'$ if there exists a deterministic polynomial-time many-one reduction from L to L'.

Definition 1 (from [6]) A problem A is *non-deterministic polynomial-time many-one reducible* to a problem B ($A \leq_{NP} B$) if there is a nondeterministic polynomial-time Turing machine M such that $x \in A$ if and only if there exists a computation of M that outputs y on input x, and $y \in B$. We denote by A_{NP} the smallest class that contains A and is downward closed under \leq_{NP} .

Observe that \leq_{NP} is transitive [6]. To state the complexity classification for existential positive first-order logic, we need the following concept. The Γ -localizer $F(\psi)$ of a formula ψ is defined as follows:

•
$$F(\exists x.\psi) = F(\psi)$$

- $F(\varphi \land \psi) = F(\varphi) \land F(\psi)$
- $F(\varphi \lor \psi) = F(\varphi) \lor F(\psi)$

• When ψ is atomic, then $F(\psi) = \begin{cases} true & \text{if } \psi \text{ is satisfiable in } \Gamma \\ false & \text{otherwise} \end{cases}$

Definition 2 We call a structure Γ *locally refutable* if every existential positive sentence Φ is true in Γ *if and only if* the Γ -localizer $F(\Phi)$ is logically equivalent to *true*.

Proposition 3 A structure Γ is locally refutable if and only if every unsatisfiable conjunction of atomic formulas contains an unsatisfiable conjunct.

Proof: First suppose that Γ is locally refutable, and let φ be a conjunction of atomic formulas with variables x_1, \ldots, x_n . Then every conjunct of φ is satisfiable in Γ if and only if $F(\varphi)$ is true. By local refutability of Γ this is the case if and only if $\exists x_1, \ldots, x_n.\varphi$ is true in Γ , which shows the claim.

Now suppose that Γ is not locally refutable, that is, there is an existential positive sentence Φ that is false in Γ such that $F(\Phi)$ is true. Define recursively for each subformula ψ of Φ where $F(\psi)$ is true the formula $T(\psi)$ as follows. If ψ is of the form $\psi_1 \lor \psi_2$, then for some $i \in \{1, 2\}$ the formula $F(\psi_i)$ must be true, and we set $T(\psi)$ to be $T(\psi_i)$. If ψ is of the form $\psi_1 \land \psi_2$, then for both $i \in \{1, 2\}$ the formula $F(\psi_i)$ must be true, and we set $T(\Psi)$ to be $T(\psi_1) \land T(\psi_2)$.

Each conjunct φ in $T(\Phi)$ is satisfiable in Γ since $F(\Phi)$ is true. But since Φ is false in Γ , $T(\Phi)$ must be unsatisfiable.

In Section 3, we will show the following result.

Theorem 4 Let Γ be a structure with a finite relational signature τ . If Γ is locally refutable then the problem $ExPOS(\Gamma)$ to decide whether an existential positive sentence is true in Γ is in LOGSPACE. If Γ is not locally refutable, then $ExPOS(\Gamma)$ is complete for the class $CSP(\Gamma)_{NP}$ under polynomial-time many-one reductions.

In particular, $ExPOS(\Gamma)$ is in LOGSPACE or is NP-hard (under deterministic polynomial-time manyone reductions). If Γ is finite, then $ExPOS(\Gamma)$ is in LOGSPACE or NP-complete, because finite domain constraint satisfaction problems are clearly in NP. The observation that $ExPOS(\Gamma)$ is in LOGSPACE or NP-complete has previously been made in [5] and independently in [8]. However, our proof remains the same for finite domains and is simpler than the previous proofs.

3 Proof

Before we prove Theorem 4, we start with the following simpler result.

Theorem 5 Let Γ be a structure with a finite relational signature τ . If Γ is locally refutable, then the problem $\text{ExPOS}(\Gamma)$ to decide whether an existential positive sentence is true in Γ is in LOGSPACE. If Γ is not locally refutable, then $\text{ExPOS}(\Gamma)$ is NP-hard (under polynomial-time many-one reductions).

To prove Theorem 5, we need first to prove the following lemma.

Lemma 6 A structure Γ is not locally refutable if and only if there are existential positive formulas ψ_0 and ψ_1 with the property that

- ψ_0 and ψ_1 define non-empty relations over Γ ;

- $\psi_0 \wedge \psi_1$ defines the empty relation over Γ .

Proof: The "if"-part of the statement is immediate. To show the "only if"-part, suppose that Γ is not locally refutable. Then by Proposition 3 there is an unsatisfiable conjunction ψ of satisfiable atomic formulas. Among all such formulas ψ , let ψ be one of minimal length. Let ψ_0 be one of the atomic formulas in ψ , and let ψ_1 be the conjunction over the remaining conjuncts in ψ . Since ψ was chosen to be minimal, the formula ψ_1 must be satisfiable. By construction ψ_0 is also satisfiable and ψ is unsatisfiable, which is what we had to show.

Proof of Theorem 5: If Γ is locally refutable, then $\text{ExPOs}(\Gamma)$ can be reduced to the positive Boolean formula evaluation problem, which is known to be LOGSPACE-complete. We only have to construct from an existential positive sentence Φ a Boolean formula $F := F_{\Gamma}(\Phi)$ as described before Definition 2. Clearly, this construction can be performed with logarithmic work-space. We evaluate F, and reject if F is false, and accept otherwise.

If Γ is not locally refutable, we show NP-hardness of $ExPOS(\Gamma)$ by reduction from 3-SAT. Let I be a 3-SAT instance. We construct an instance Φ of $ExPOS(\Gamma)$ as follows. Let ψ_0 and ψ_1 be the formulas from Lemma 6 (suppose they are *d*-ary). Let v_1, \ldots, v_n be the Boolean variables in I. For each v_i we introduce d new variables $\bar{x}_i = x_i^1, \ldots, x_i^d$. Let Φ be the instance of $ExPOS(\Gamma)$ that contains the following conjuncts:

- For each $1 \leq i \leq n$, the formula $\psi_0(\bar{x}_i) \lor \psi_1(\bar{x}_i)$
- For each clause $l_1 \vee l_2 \vee l_3$ in *I*, the formula $\psi_{i_1}(\bar{x}_{j_1}) \vee \psi_{i_2}(\bar{x}_{j_2}) \vee \psi_{i_3}(\bar{x}_{j_3})$ where $i_p = 0$ if l_p equals $\neg x_{j_p}$ and $i_p = 1$ if l_p equals x_{j_p} , for all $p \in \{1, 2, 3\}$.

It is clear that Φ can be computed in deterministic polynomial time from I, and that Φ is true in Γ if and only if I is satisfiable.

Applied to finite relational structures Γ , we obtain the result from [5] and [8], that is, $ExPOS(\Gamma)$ is in LOGSPACE if Γ is *a*-valid and NP-complete otherwise. We prove in the following proposition that, over a finite domain D, Γ is locally refutable if and only if it is *a*-valid for an element $a \in D$.

Proposition 7 Let Γ be a relational structure with a finite domain D. Then Γ is locally refutable if and only *if it is a-valid for an element* $a \in D$.

Proof: Suppose that Γ is *a*-valid, and let Φ be an existential positive sentence over the signature of Γ . To show that Γ is locally refutable, we only have to show that Φ is true in Γ when $F(\Phi)$ is equivalent to true (since the other direction holds trivially). But this follows from the fact that if an atomic formula $R(x_1, \ldots, x_n)$ is satisfiable in Γ then in fact this formula can be satisfied by setting all variables to *a*.

For the opposite direction of the statement, let $D = \{a_1, \ldots, a_n\}$, and suppose that for all $a \in D$ the structure Γ is not *a*-valid. That is, for each $a_i \in D$ there exists a non-empty relation R_i of arity r_i in Γ such that $(a_i, \ldots, a_i) \notin R$. Let r be $\sum_{i=1}^n r_i$, and let x_1, \ldots, x_{rn} be distinct variables. Consider the formula

$$\psi = \bigwedge_{\overline{y} \in \{x_1, \dots, x_{r_n}\}^r} R_1(y_1, \dots, y_{r_1}) \wedge \dots \wedge R_n(y_{r-r_n+1}, \dots, y_r)$$
(1)

By the pigeonhole principle, for every mapping $f: \{x_1, \ldots, x_{rn}\} \to D$ at least r variables are mapped to the same value, say to a_i . For a vector \overline{y} that contains exactly these r variables, for some l there is a conjunct $R_i(y_{l+1}, \ldots, y_{l+r_i})$ in ψ ; but by assumption, R_i does not contain the tuple (a_i, \ldots, a_i) . This shows that $\exists x_1, \ldots, x_{rn}.\psi$ is not true in Γ . On the other hand, since each relation R_i is non-empty, it is clear that the Boolean formula $F(\exists x_1, \ldots, x_{rn}.\psi)$ is true. Therefore, Γ is not locally refutable. **Remark 8** In the proof of Theorem 4 it will be convenient to assume that Γ has a single relation R. When we study the problem $\text{CSP}(\Gamma)$, this is without loss of generality, since we can always find a CSP which is deterministic polynomial-time equivalent and where the template is of this form: if $\Gamma = (D; R_1, \ldots, R_n)$ where R_i has arity r_i and is not empty, then $\text{CSP}(\Gamma)$ is equivalent to $\text{CSP}(D; R_1 \times \cdots \times R_n)$ where $R_1 \times \cdots \times R_n$ is the $\sum_{i=1}^n r_i$ -ary relation defined as the Cartesian product of the relations R_1, \ldots, R_n . Similarly, $\text{ExPos}(\Gamma)$ is equivalent to $\text{ExPos}(D; R_1 \times \cdots \times R_n)$.

Proof of Theorem 4: If Γ is locally refutable then the statement has been shown in Theorem 5. Suppose that Γ is not locally refutable. To show that ExPOS(Γ) is contained in $CSP(Γ)_{NP}$, we construct a non-deterministic Turing machine T which takes as input an instance Φ of ExPOS(Γ), and which outputs an instance T(Φ) of CSP(Γ) as follows.

On input Φ the machine T proceeds recursively as follows:

- if Φ is of the form $\exists x.\varphi$ then return $\exists x.T(\varphi)$;
- if Φ is of the form $\varphi_1 \wedge \varphi_2$ then return $T(\varphi_1) \wedge T(\varphi_2)$;
- if Φ is of the form $\varphi_1 \lor \varphi_2$ then non-deterministically return either $T(\varphi_1)$ or $T(\varphi_2)$;
- if Φ is of the form $R(x_1, \ldots, x_k)$ then return $R(x_1, \ldots, x_k)$.

The output of T can be viewed as an instance of $CSP(\Gamma)$, since it can be transformed to a primitive positive sentence (by moving all existential quantifiers to the front). It is clear that T has polynomial running time, and that Φ is true in Γ if and only if there exists a computation of T on Φ that computes a sentence that is true in Γ .

We now show that $\operatorname{ExPOS}(\Gamma)$ is hard for $\operatorname{CSP}(\Gamma)_{\operatorname{NP}}$ under \leq_m -reductions. Let L be a problem with a non-deterministic polynomial-time many-one reduction to $\operatorname{CSP}(\Gamma)$, and let M be the non-deterministic Turing machine that computes the reduction. We have to construct a deterministic Turing machine M' that computes for any input string s in polynomial time in |s| an instance Φ of $\operatorname{ExPOS}(\Gamma)$ such that Φ is true in Γ if and only if there exists a computation of M on s that computes a satisfiable instance of $\operatorname{CSP}(\Gamma)$.

Say that the running time of M on s is in $O(|s|^e)$ for a constant e. Hence, there are constants s_0 and c such that for $|s| > s_0$ the running time of M and hence also the number of constraints in the input instance of $CSP(\Gamma)$ produced by the reduction is bounded by $t := c|s|^e$. The non-deterministic computation of M can be viewed as a deterministic computation with access to non-deterministic advice bits as shown in [4]. We also know that for $|s| > s_0$, the machine M can access at most t non-deterministic bits. If w is a sufficiently long bit-string, we write M_w for the deterministic Turing machine obtained from M by using the bits in w as the non-deterministic bits, and $M_w(s)$ for the instance of $CSP(\Gamma)$ computed by M_w on input s.

If $|s| \leq s_0$, then M' returns $\exists \bar{x}.\psi_1(\bar{x})$ if there is an $w \in \{0,1\}^*$ such that $M_w(s)$ is a satisfiable instance of $\text{CSP}(\Gamma)$, and M' returns $\exists \bar{x}(\psi_0(\bar{x}) \land \psi_1(\bar{x}))$ otherwise (i.e., it returns a false instance of $\text{ExPos}(\Gamma)$; ψ_0 and ψ_1 are defined in Lemma 6). Since s_0 is a fixed finite value, M' can perform these computations in constant time.

By Remark 8 made above, we can assume without loss of generality that Γ has just a single relation R. Let l be the arity of R. Then instances of $CSP(\Gamma)$ with variables x_1, \ldots, x_n can be encoded as sequences of numbers that are represented by binary strings of length $\lceil \log t \rceil$ as follows: the *i*-th number m in this sequence indicates that the $(((i-1) \mod l) + 1)$ -st variable in the $(((i-1) \dim l) + 1)$ -st constraint is x_m .

For $|s| > s_0$, we use a construction from the proof of Cook's theorem given in [4]. In this proof, a computation of a non-deterministic Turing machine T accepting a language L is encoded by Boolean variables that represent the state and the position of the read-write head of T at time r, and the content of

the tape at position j at time r. The tape content at time 0 consists of the input x, written at positions 1 through n, and the non-deterministic advice bit string w, written at positions -1 through -|w|. The proof in [4] specifies a deterministic polynomial-time computable transformation f_L that computes for a given string s a SAT instance $f_L(s)$ such that there is an accepting computation of T on s if and only if there is a satisfying truth assignment for $f_L(s)$.

In our case, the machine M computes a reduction and thus computes an output string. Recall our binary representation of instances of the CSP M writes on the output tape a sequence of numbers represented by binary strings of length $\lceil \log t \rceil$. It is straightforward to modify the transformation f_L given in the proof of Theorem 2.1 in [4] to obtain for all positive integers a, b, c where $a \le t, b \le l, c \le \lceil \log t \rceil$, and $d \in \{0, 1\}$, a deterministic polynomial-time transformation $g_{a,b,c}^d$ that computes for a given string s a SAT instance $g_{a,b,c}^d(s)$ with distinguished variables $z_1, \ldots, z_p, p \le t$ for the non-deterministic bits in the computation of M such that the following are equivalent:

- $g_{a,b,c}^d(s)$ has a satisfying assignment where z_i is set to $w_i \in \{0,1\}$ for $1 \le i \le p$;
- the c-th bit in the b-th variable of the a-th constraint in $M_w(s)$ equals d.

We use the transformations $g_{a,b,c}^d$ to define M' as follows. The machine M' first computes the formulas $g_{a,b,c}^d(s)$. For every Boolean variable v in these formulas we introduce a new conjunct $\psi_0(\overline{x}_v) \lor \psi_1(\overline{x}_v)$ where \overline{x}_v is a d-tuple of fresh variables and ψ_0 and ψ_1 are the two formulas defined in Lemma 6. Then, every positive literal v in the original conjuncts of the formula is replaced by $\psi_1(\overline{x}_v)$, and every negative literal $l = \neg v$ by $\psi_0(\overline{x}_v)$. We then existentially quantify over all variables except for $\overline{x}_{z_1}, \ldots, \overline{x}_{z_p}$. Let $\psi_{a,b,c}^d(s)$ denote the resulting existential positive formula. For positive integers k and i, we denote as k[i] the i-th bit in the binary representation of k. Let n be the total number of variables in the CSP instance $M_w(s)$ (in particular, $n \leq t$). It is clear that the formula

$$\exists y_1, \dots, y_n, \bar{x}_{z_1}, \dots, \bar{x}_{z_p} \cdot \bigwedge_{1 \le a, k_1, \dots, k_l \le t} \left(\left(\bigwedge_{b \le l, c} \psi_{a, b, c}^{k_b[c]}(s) \right) \to R(y_{k_1}, \dots, y_{k_l}) \right)$$

can be re-written in existential positive form Φ without blow-up: we can replace implications $\alpha \to \beta$ by $\neg \alpha \lor \beta$, and then move the negation to the atomic level, where we can remove negation by exchanging the role of φ_0 and φ_1 . Hence, Φ can be computed by M' in polynomial time.

We claim that the formula Φ is true in Γ if and only if there exists a computation of M on s that computes a satisfiable instance of $CSP(\Gamma)$. To see this, let w be a sufficiently long bit-string such that $M_w(s)$ is a satisfiable instance of $CSP(\Gamma)$. Suppose for the sake of notation that the n variables in $M_w(s)$ are the variables y_1, \ldots, y_n . Let a_1, \ldots, a_n be a satisfying assignment to those n variables. Then, if for $1 \le i \le n$ the variable y_i in the formula Φ is set to a_i , and for $1 \le i \le p$ the variables \bar{x}_{z_i} are set to a tuple that satisfies ψ_d where d is the *i*-th bit in w, we claim that the inner part of Φ is true in Γ . The reason is that, due to the way how we set the variables of the form \bar{x}_{z_i} , the precondition $\left(\bigwedge_{b \le l,c} \psi_{a,b,c}^{k_b[c]}(s) \right)$ is true if and only if $R(y_{k_1}, \ldots, y_{k_l})$ is a constraint in $M_w(s)$. Therefore, all the atomic formulas of the form $R(y_{k_1}, \ldots, x_{k_l})$ are satisfied due to the way how we set the variables y_i , and hence Φ is true in Γ . It is straightforward to verify that the opposite implication holds as well, and this shows the claimed equivalence.

4 Structures With Function Symbols

In this section, we briefly discuss the complexity of $ExPos(\Gamma)$ when Γ might also contain functions. That is, we assume that the signature of Γ consists of a finite set of relation and function symbols, and that the input formulas for the problem $ExPos(\Gamma)$ are existential positive first-order formulas over this signature. It is easy to see from the proofs in the previous section that when Γ is not locally refutable, then $ExPos(\Gamma)$ is still NP-hard (with the same definition of local refutability as before).

The case when Γ is locally refutable becomes more intricate when Γ has functions. We present an example of a locally refutable structure Γ where $\text{ExPos}(\Gamma)$ is NP-hard. Let the signature of Γ be the structure $(2^{\mathbb{N}}; \neq, \cap, \cup, c, \mathbf{0}, \mathbf{1})$ where \neq is the binary disequality relation, \cap and \cup are binary functions for intersection and union, respectively, c is a unary function for complementation, and $\mathbf{0}, \mathbf{1}$ are constants (i.e., 0-ary functions) for the empty set and the full set \mathbb{N} , respectively.

Proposition 9 The structure $(2^{\mathbb{N}}; \neq, \cap, \cup, c, \mathbf{0}, \mathbf{1})$ is locally refutable.

Proof: By Lemma 6 is suffices to show that if Ψ is a conjunction of atomic formulas that are satisfiable in Γ , then Ψ is satisfiable over Γ . Since the only relation symbol in the structure is \neq , every conjunct in Ψ is of the form $t_1 \neq t_2$, where t_1 and t_2 are terms formed by variables and the function symbols $\cap, \cup, c, \mathbf{1}$ and $\mathbf{0}$. By Boole's fundamental theorem of Boolean algebras, t = t' can be re-written as $t'' = \mathbf{0}$. Therefore, Ψ can be written as $t_1 \neq \mathbf{0} \land \cdots \land t_n \neq \mathbf{0}$. Since Γ is an infinite Boolean algebra, Theorem 5.1 in [7] shows that if $t_i \neq \mathbf{0}$ is satisfiable in Γ for all $i \leq n$, then Ψ is satisfiable in Γ as well.

Proposition 10 The problem $\text{ExPos}(2^{\mathbb{N}}; \neq, \cap, \cup, c, \mathbf{0}, \mathbf{1})$ is NP-hard.

Proof: The proof is by reduction from SAT. Given a Boolean formula Ψ in CNF with variables x_1, \ldots, x_n , we replace each conjunction in Ψ by \cap , each disjunction by \cup , and each negation by c. Let t be the resulting term over the signature $\{\cap, \cup, c\}$ and variables x_1, \ldots, x_n . It is easy to verify that $\exists x_1, \ldots, x_n. t \neq \mathbf{0}$ is true in Γ if and only if Ψ is a satisfiable Boolean formula.

5 Conclusion

In this paper, we proved that for an arbitrary (finite or infinite) relational structure the problem $ExPos(\Gamma)$ is in LOGSPACE if Γ is locally refutable, or otherwise complete for the class $CSP(\Gamma)_{NP}$ under deterministic polynomial-time many-one reductions. In particular, if Γ is not locally refutable then the problem $ExPos(\Gamma)$ is NP-hard. Structures with a finite domain are locally refutable if and only if they are *a*-valid for some value *a* of the domain *D*. Finally, we present an example of a structure that shows that our result cannot be straightforwardly extended to structures Γ with function symbols, since local refutability of Γ no longer implies that $ExPos(\Gamma)$ is in LogSPACE when Γ contains function symbols.

Acknowledgment

We would like to thank Víctor Dalmau for helpful suggestions, and Moritz Müller for the encouragement to study the case where the structure Γ contains function symbols.

References

- [1] N. Creignou, Ph. G. Kolaitis, and H. Vollmer, editors. *Complexity of Constraints An Overview of Current Research Themes*, volume 5250 of Lecture Notes in Computer Science, *Springer Verlag*, 2008.
- [2] M. Bodirsky and M. Grohe. Non-Dichotomies in Constraint Satisfaction Complexity. Proceedings 35th International Colloquium on Automata, Languages and Programming (ICALP 2008), Part II, Reykjavik (Iceland), volume 5126 of Lecture Notes in Computer Science, 184–196, 2008.
- [3] M. Bodirsky, M. Hermann and F. Richoux. Complexity of Existential Positive First-Order Logic. Proceedings 5th Conference on Computability in Europe (CiE 2009), Heidelberg (Germany), 31–36, 2009.
- [4] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. *W.H. Freeman and Co*, 1979.
- [5] M. Hermann and F. Richoux. On the Computational Complexity of Monotone Constraint Satisfaction Problems. Proceedings 3rd Annual Workshop on Algorithms and Computation (WALCOM 2009), Kolkata (India), 286–297, 2009.
- [6] R. E. Ladner, N. A. Lynch and A. L. Selman. A Comparison of Polynomial-Time Reducibilities. *Theoretical Computer Science*, 1(2), 103–124, 1975.
- [7] K. Marriott and M. Odersky. Negative boolean constraints. *Theoretical Computer Science*, 160(1&2), 365–380, 1996.
- [8] B. Martin. Dichotomies and Duality in First-order Model Checking Problems. *CoRR abs/cs/0609022*, 2006.
- [9] B. Martin. First-Order Model Checking Problems Parameterized by the Model. *Proceedings 4th Conference on Computability in Europe (CiE 2008), Athens (Greece)*, 417–427, 2008.