
Performance Analysis of Parallel
Constraint-Based Local Search

Yves Caniou
JFLI, CNRS / NII, Japan
yves.caniou@ens-lyon.fr

Daniel Diaz
University of Paris 1-Sorbonne, France

daniel.diaz@univ-paris1.fr

Florian Richoux
JFLI, CNRS / University of Tokyo, Japan

richoux@jfli.itc.u-tokyo.ac.jp

Philippe Codognet
JFLI, CNRS / UPMC / University of Tokyo, Japan

codognet@jfli.itc.u-tokyo.ac.jp

Salvador Abreu
Universidade de Évora and CENTRIA FCT/UNL,

Portugal
spa@di.uevora.pt

Abstract
We present a parallel implementation of a constraint-based local
search algorithm and investigate its performance results for hard
combinatorial optimization problems on two different platforms up
to several hundreds of cores. On a variety of classical CSPs bench-
marks, speedups are very good for a few tens of cores, and good up
to a hundred cores. More challenging problems derived from real-
life applications (Costas array) shows even better speedups, nearly
optimal up to 256 cores.

Categories and Subject Descriptors G [1.6]: Constrained op-
timization; G [2.1]: Combinatorial algorithms; F [2.2]: Sorting
and searching; D [1.3]: Parallel programming

General Terms Experimentation, Performance, Algorithms

Keywords combinatorial optimization, meta-heuristics, paral-
lelism, implementation, Constraints, local search

1. Introduction
During the last decade, the family of Local Search methods and
Metaheuristics has been quite successful in solving large real-
life combinatorial problems [8–10]. Solving Constraint Satisfac-
tion Problems (CSP) by Local Search is a way to tackle CSPs
instances far beyond the reach of classical propagation-based
solvers [3, 9, 11]. An effcient and generic domain-independent
Local Search method named ”Adaptive Search” was proposed
in [3, 4]. It takes advantage of the structure of the problem to guide
the search and can be applied to a large class of constraints (e.g.,
linear and non-linear arithmetic constraints, symbolic constraints).
Moreover, it intrinsically copes with over-constrained problems.

Parallel implementation of local search metaheuristics has been
studied since the early 90’s, when multiprocessor machines started
to become widely available, see [12]. With the increasing avail-

Copyright is held by the author/owner(s).
PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.
ACM 978-1-4503-1160-1/12/02.

ability of PC clusters in the early 2000’s, this domain became ac-
tive again [1, 5]. Apart from domain-decomposition methods and
population-based method (such as genetic algorithms), [12] distin-
guishes between single-walk and multiple-walk methods for Local
Search. Single-walk methods consist in using parallelism inside a
single search process, e.g., for parallelizing the exploration of the
neighborhood. Multiple-walk methods consist in developing sev-
eral concurrent explorations of the search space starting from dif-
ferent initial configurations, either independently or cooperatively
with some communication between concurrent processes. Sophis-
ticated cooperative strategies for multiple-walk methods can be de-
vised but requires shared-memory or emulation of central memory
in distributed clusters, impacting thus on performances. A key point
is that independent multiple-walk methods are the most easy to im-
plement on parallel computers without shared memory and can lead
in theory to linear speed-up if solutions are uniformly distributed in
the search space and if the method is able to diversify correctly [12].

We thus developed an independent multiple-walks of the Adap-
tive Search constraint solver (i.e. launching in parallel several
search engines starting from different initial configurations and
performing the computation in a purely independent manner) and
benchmarked it with classical CSP benchmarks from the CSPLIB
[7] and with a very difficult combinatorial problem, the Costas
Array Problem (CAP). Historically, Costas arrays have been devel-
oped in the 1960’s to compute a set of sonar and radar frequencies
avoiding noise. The problem is to find an n × n grid containing n
marks such that there is exactly one mark per row and per column
and the n(n − 1)/2 vectors between the marks are all different. It
is convenient to formalize the CAP as a permutation problem on
{1, 2, . . . , n} together with a set of constraints on 2D distance vec-
tors. Although there are constructive methods to produce Costas ar-
rays of order up to 27, it remains unknown if there exist any Costas
arrays of size 32 or 33. Indeed, the solution density of Costas ar-
rays is very low, e.g., among the 27! permutations, there are only
204 Costas arrays. A very complete survey on Costas arrays can be
found in [6]. Obviously, the search space for finding a Costas array
of size n grows exponentially with n and it is thus a very good
benchmark for search and combinatorial optimization methods.

2. Parallel Performance Analysis
We performed our experiments on two different platforms:



• the Hitachi HA8000 supercomputer of the University of Tokyo
with a total number of 15232 cores. This machine is composed
of 952 nodes, each of which is composed of 4 AMD Opteron
8356 (Quad core, 2.3 GHz) with 32 GB of memory. Users can
only have a maximum of 64 nodes (1,024 cores) in normal
service and we used up to 256 cores in our experiments.

• the GRID’5000 infrastructure, the French national Grid for the
research, which contains a maximum of 5934 cores deployed on
9 sites distributed in France. We used two subsets of the com-
puting resources of the Sophia-Antipolis node: Suno, composed
of 45 Dell PowerEdge R410 with 8 cores each, thus a total of
360 cores, and Helios, composed of 56 Sun Fire X4100 with 4
cores each, thus a total of 224 cores.

We first reported in [2] the performance of classical CSP prob-
lems from CSPLIB: all-interval (prob007), perfect-square
(prob009), magic-square: (prob019). Table 1 shows that speedups
are more or less equivalent on the HA8000 machine and on the
GRID’5000 platform. They are good but tend to level after 128
cores, except for perfect-square on GRID’5000.

Platform Problem Time Speedup on k cores
1 core 32 64 128 256

HA8000 MS 400 6282 20.6 31.7 41.3 54.1
Perfect 5 42.7 29.5 44.6 49.1 57.0
A-I 700 638 14.8 17.8 23.4 27.7

Suno MS 400 5362 22.8 32.6 41.3 52.8
Perfect 5 106 23 46.1 70.7 106
A-I 700 662 15.8 19.9 23.9 28.3

Helios MS 400 6565 20.6 31 44 -
Perfect 5 139.7 24.5 46.6 77.2 -
A-I 700 865.8 14.9 23.5 27.3 -

Table 1. Speedups on HA8000, Suno and Helios

Platform Problem Time on Speedup on k cores
32 cores 64 128 256

HA8000 CAP21 160.4 1.96 4.16 10.0
CAP22 501.2 2.01 3.90 8.24

Suno CAP21 171 3.32 4.90 9.94
CAP22 731 1.92 3.66 7.09

Helios CAP21 153 1.51 4.17 -
CAP22 1218 2.34 5.53 -

Table 2. Speedups on HA8000, Suno and Helios for large in-
stances of CAP

For big instances of Costas arrays, speedups w.r.t. 1 core are
nearly linear, e.g., 107 for 128 cores and 218 for 256 cores for
n = 21 on Suno. For n = 22, as sequential computation takes
many hours, we limited our experiments to executions on 32 cores
and above, see Table 2. We can observe that on all platforms, exe-
cution times are halved when the number of cores is doubled, thus
achieving ideal speedup. This is graphically depicted in Figure 1
on a log-log scale. As a final result, we note that we can now solve
n = 22 in about one minute on average with 256 cores on HA8000.

3. Conclusion and Future Work
We presented performances of a parallel implementation of a
constraint-based local search algorithm, the ”Adaptive Search”
method in a multiple independent-walk manner. Each process is an
independent search engine and there is no communication between
the simultaneous computations except for completion. Performance
evaluation on a variety of constraint satisfaction problems over two

Figure 1. Speedups for CAP 22 w.r.t. 32 cores

different parallel architectures (a supercomputer and a Grid plat-
form) shows that the method is achieving good but not optimal
speedups for classical benchmarks and presents linear speedups for
the Costas Array Problem, a hard combinatorial problem.

Current work focuses on more complex parallel methods with
inter-processes communication, i.e., in the dependent multiple-
walk scheme, in order to further improve performance. The com-
munication mechanism is being designed with the goals of (1)
minimizing data transfers as much as possible, as we aim at mas-
sively parallel machines with no hierarchical memory, (2) re-using
some common computations and/or recording previous interesting
crossroads in the resolution, from which a restart can be operated.

References
[1] E. Alba. Special issue on new advances on parallel meta-heuristics for

complex problems. Journal of Heuristics, 10(3):239–380, 2004.
[2] Y. Caniou, P. Codognet, D. Diaz, and S. Abreu. Experiments in paral-

lel constraint-based local search. In EvoCOP11, 11th European Con-
ference on Evolutionary Computation in Combinatorial Optimisation,
LNCS 6622, pages 96–107. Springer Verlag, 2011.

[3] P. Codognet and D. Diaz. Yet another local search method for con-
straint solving. In proceedings of SAGA’01, pages 73–90. Springer
Verlag, 2001.

[4] P. Codognet and D. Diaz. An efficient library for solving CSP with lo-
cal search. In T. Ibaraki, editor, MIC’03, 5th International Conference
on Metaheuristics, 2003.

[5] T. Crainic and M. Toulouse. Special issue on parallel meta-heuristics.
Journal of Heuristics, 8(3):247–388, 2002.

[6] K. Drakakis. A review of costas arrays. Journal of Applied Mathemat-
ics, 2006:1–32, 2006.

[7] I. P. Gent and T. Walsh. CSPLIB: A benchmark library for constraints.
In proceedings of CP’99, pages 480–481. Springer Verlag, 1999.

[8] T. Gonzalez, editor. Handbook of Approximation Algorithms and
Metaheuristics. Chapman and Hall / CRC, 2007.

[9] P. V. Hentenryck and L. Michel. Constraint-Based Local Search. The
MIT Press, 2005.

[10] T. Ibaraki, K. Nonobe, and M. Yagiura, editors. Metaheuristics:
Progress as Real Problem Solvers. Springer Verlag, 2005.

[11] S. Kadioglu and M. Sellmann. Dialectic search. In CP’09, Int. Conf.
on Principles and Practice of Constraint Programming. Springer Ver-
lag, 2009.

[12] M. Verhoeven and E. Aarts. Parallel local search. Journal of Heuris-
tics, 1(1):43–65, 1995.


