
On the Computational Complexity of
Monotone Constraint Satisfaction Problems

Miki Hermann and Florian Richoux

LIX (CNRS, UMR 7161), École Polytechnique, 91128 Palaiseau, France
{hermann | richoux}@lix.polytechnique.fr

Abstract. Constraint Satisfaction Problems (CSP) constitute a convenient way
to capture many combinatorial problems. The general CSP is known to be NP-
complete, but its complexity depends on a parameter, usually a set of relations,
upon which they are constructed. Following the parameter, there exist tractable
and intractable instances of CSPs. In this paper we show a dichotomy theorem for
every finite domain of CSP including also disjunctions. This dichotomy condition
is based on a simple condition, allowing us to classify monotone CSPs as tractable
or NP-complete. We also prove that the meta-problem, verifying the tractabil-
ity condition for monotone constraint satisfaction problems, is fixed-parameter
tractable. Moreover, we present a polynomial-time algorithm to answer this ques-
tion for monotone CSPs over ternary domains.

1 Introduction

Constraint Satisfaction Problems (CSP) constitute a common formalism to describe
many algorithmic problems originating from combinatorics and graph theory, artificial
intelligence, computational molecular biology, etc. These problems require a quantita-
tive analysis studying their computational complexity. The goal to study the complexity
of constraint satisfaction problems is the recognition of conditions allowing us to dis-
tinguish between tractable and intractable instances of the considered problem, as well
as the understanding of the complexity classes to which these instances belong. The
study of computational complexity of constraints satisfaction problems was started by
Schaefer in his landmark paper [9], where he completely characterized the complex-
ity of Boolean CSP, distinguishing between polynomial and NP-complete instances.
Feder and Vardi [4] extended this study to constraint satisfaction problems over finite
domains, for which they conjectured the existence of a Dichotomy Theorem. So far, this
claim was proved only for the ternary domain by Bulatov [1], exhibiting an involved
Dichotomy Theorem, whereas the claim remains open for higher cardinality domains.

The main difficulty to resolve this conjecture resides in the nonexistence of a finite
or countable number of function sets, called clones, under which the relations building
the CSPs are closed. The closure under the functions of a given clone provides us with
the required characterization of (in)tractability. There is a countably infinite number of
clones for the Boolean domain and the cases discriminating between tractable and NP-
complete instances appear in a finite part of the lattice. The characterization for each
clone can always be expressed by a finite set of function, called a basis. These facts were

largely exploited by Schaefer in [9]. However, the corresponding lattice for domains of
cardinality 3 and more is uncountable, as it was proved by Yanov and Muchnik [10].

One possibility to circumvent this difficulty is to introduce more structure into the
constraint satisfaction problems, hoping to find only a finite number of cases to be
analyzed. To introduce more structure, we choose to extend the constraint satisfaction
problems with disjunction. Usual CSPs consider a set of constraints logically interpreted
as a conjunction. Introducing a disjunction connective among constraints might seem to
destroy this correspondence between the logic and set-theoretic approaches. If we con-
sider each set of relations including the disjunction, we can easily recover the aforemen-
tioned correspondence. Our approach explores that particular part of constraint satisfac-
tion problems that always include the disjunction relation. Monotone CSPs have been
also considered from a different viewpoint by Cohen, Jeavons, Jonsson and Koubarakis
in [2]. A moments reflection might consider monotone constraint satisfaction problems
as too restrictive. However, this is incorrect since they represent the CSPs over weak
Krasner algebras, a large and well-studied structure in universal algebra [6, 7]. The ad-
vantage of weak Krasner algebras is that they are closed only under endomorphisms.
Since there is only a finite number of endomorphisms on a given finite domain, we are
ensured to obtain a finite complexity characterization.

In this paper we study the complexity of monotone constraint satisfaction problems,
also considered to be the CSPs over weak Krasner algebras. We derive for them a com-
plete characterization of complexity by means of a Dichotomy Theorem for each finite
domain. Once the tractability conditions derived, we study also the complexity of the
meta-problem, i.e., the complexity of the decision problem whether a given monotone
CSP satisfies the tractability condition. This analysis is first performed for the general
case of any domain cardinality. Since the ternary domain presents a particular behavior,
we perform a new complexity analysis for its meta-problem, deriving a sharper result
than for the general case.

2 Basic Notions

All along this paper, a function f is an unary function f : D → D with D being a fixed
size domain. The range of f , denoted by ran f , is the set {f(x) | x ∈ D}. We write
f(A) for a subset A ⊆ D to denote the set {f(a) | a ∈ A}.

The study of constraint satisfaction problems often uses the notion of relations,
clones and co-clones. A n-ary relation R on domain D is a subset of Dn. We denote
by S a set of relations R ⊆ Dk where k is the arity of R. A clone, or a functional
clone, is a set of functions containing the identity and closed under composition. The
smallest clone containing the functions F is denoted by [F]. In our scope, a co-clone,
or a relational clone, is a set of relations containing the equality eq = {(d, d) | d ∈ D}
and closed under conjunction, disjunction, variable identification and existential quan-
tification. The smallest co-clone containing the relations S is denoted by 〈S〉. Note that
we authorize the closure under disjunction in addition to the usual definition of closure.

Universal algebra often uses the concept of kernel. We define this notion with the
help of equivalence classes. Let f : D → D be a function with range ran f . A d-
equivalence class, for d ∈ ran f , is the set of elements [d]f = {x ∈ D | f(x) = d}.

The kernel ker f of a function f is the set of all equivalence classes with cardinality
strictly greater than 1 for all d ∈ ran f , i.e. ker f = {[d]f | d ∈ ran f and |[d]f | ≥ 2}.

We need the notion of function depth to describe the computational complexity of a
clone [F]. The depth of a function f with respect to a set F , denoted by Depth(F, f),
is the length of the shortest composition of functions fi ∈ F required to obtain f . The
depth of a function f , denoted by Depth(f), is defined by the identity Depth(f) =
max(Depth(F, f)) for all sets F such that f ∈ [F]. Thus, if we want to obtain a
function f from a set F , it is useless to make compositions of functions longer than
Depth(f). If all combinations with length less or equal than Depth(f) do not allow us
to get a function f , it means that f does not belong to the clone generated by F .

3 Monotone Constraint Satisfaction Problems

Constraint satisfaction problems are usually presented as conjunctions of constraints.
The parametric problem CSP(S), with S being a set of relations, is a constraint satisfac-
tion problem where constraints are built upon relations from S. Constraint satisfaction
problems are known to be NP-complete in general, but the complexity of parametric
problems CSP(S) depends on S, ranging from polynomial to NP-complete. Schaefer [9]
gave a dichotomy theorem on Boolean constraints. If S verifies one of the six conditions
presented by Schaefer, then CSP(S) is polynomial. Otherwise it is NP-complete.

It is difficult to obtain such a dichotomy for finite domains of higher cardinality.
The only exception is a result from Bulatov [1] showing a dichotomy for ternary do-
mains. A dichotomy theorem for other finite domains is still an open question. We will
focus our interest on the complexity of parametric problems MCSP(S) where MCSP is
a generalization of CSP defined as follows: atomic constraints play the role of liter-
als and constraints are built by means of conjunctions and disjunctions. In this paper,
we present a dichotomy with simple conditions for the algorithmic problem MCSP(S)
with S being a set of relations over a finite domain D.

Let R ⊆ Dk be a relation on D and V be a set of variables. A literal is a predi-
cate R(x1, . . . , xk) formed from the relation R and variables x1, . . . , xk in V , where
ar(R) = k. A formula is defined inductively in the following way: (1) TRUE and FALSE,
respectively denoted by > and ⊥, are formulas; (2) a literal l is a formula; (3) if ϕ1 and
ϕ2 are formulas, then ϕ1∨ϕ2 and ϕ1∧ϕ2 are formulas; (4) finally if ϕ is a formula con-
taining a free variable x then ∃x ϕ is a formula. We do not consider negation in our for-
mulas because it brings us to an obvious generalization of the problem CSP(S), which
is NP-complete over every finite domain of cardinality greater than or equals to three,
for each S. An interpretation I : V → D satisfies the literal R(x1, . . . , xk), denoted by
I � R(x1, . . . , xk), if (I(x1), . . . , I(xk)) ∈ R. It is extended to formulas in the follow-
ing way: (a) I � R1(x)∨R2(x) if I � R1(x) or I � R2(x), (b) I � R1(x)∧R2(x) if
I � R1(x) and I � R2(x). We note that for all formulas ϕ, we have > � ϕ and ⊥ 2 ϕ.

We define the monotone constraint satisfaction problem as follows.

Problem: MCSP(S)
Input: A formula ϕ(x).
Question: Is the formula ϕ(x) satisfiable?

Our study of monotone constraint satisfaction problems is made easier by the exis-
tence of a Galois connection among clones and co-clones. Before defining what a Galois
connection is, we need the following notions. Let R be a relation of arity ar(R) = k
and f be a function of arity ar(f) = m. We say that f is a polymorphism of R if the
membership condition

(f(r1[1], . . . , rm[1]), . . . , f(r1[k], . . . , rm[k])) ∈ R (1)

is verified, with ri = (ri[1], . . . , ri[k]) ∈ R for all i ∈ {1, . . . ,m}. The set of polymor-
phisms of a relation R is denoted by PolR. The set of polymorphisms of a relations
set S is also denoted by PolS, defined by PolS =

⋂
R∈S PolR. In a similar way, a

relation R is an invariant of a function f if the condition (1) holds; we also say that R
is closed under f . We denote by Inv f the invariants of f and Inv F the invariants of a
set of functions F .

Pöschel proved in [7] that applying disjunction on constraints implies that relations
satisfying an instance of a MCSP problem are invariant only under unary functions.
Polymorphisms of these relations are thus endomorphisms and we denote them by End
instead of Pol. Let us for a moment denote respectively by A and B sets of relations
and functions. Pöschel [7] specifies that the mappings End: A → B and Inv : B → A
present a Galois connection between the ordered structures (A,⊆) and (B,⊆). More-
over, for all sets of relations S and functions F , the identities Inv End S = 〈S〉 and
End Inv F = [F] hold. Pöschel points out that the sets 〈S〉 and [F] are respectively a
weak Krasner algebra and an endomorphisms monoid. In this scope we can consider
the monotone constraint satisfaction problems as CSP defined upon weak Krasner alge-
bras. The existence of the aforementioned Galois connection allows us to easily decide
the complexity of monotone constraint satisfaction problems. The complexity analysis
is based on the following result.

Proposition 1. Let S1 and S2 be two sets of relations over the domain D, such that
eq ∈ S1. The inclusion EndS1 ⊆ EndS2 implies MCSP(S2) ≤P

m MCSP(S1).

Proof. From EndS1 ⊆ EndS2 follows 〈S1〉 = Inv EndS1 ⊇ Inv End S2 = 〈S2〉.
Since every co-clone (equivalent to a weak Krasner algebra) contains the equality
relation eq and is closed under conjunction, disjunction, and existential quantifica-
tion, we immediately derive the reduction MCSP(S2) ≤P

m MCSP(S2 ∪ {eq}) ≤P
m

MCSP(S1 ∪ {eq}). Since eq ∈ S1, we have MCSP(S1 ∪ {eq}) = MCSP(S1) and the
result follows. ut

According to Proposition 1, a complexity result proved for a set of relations S im-
mediately extends to all relations in the co-clone 〈S〉, provided that S contains the
equality relation eq. Therefore from now on we always assume that the equality rela-
tion eq is included in every set S. Moreover, the presence of the quaternary relation
J = {(x, y, z, w) ∈ D4 | (x = y) ∨ (z = w)} in a classical constraint satisfaction
problem reduces it to a monotone constraint satisfaction problem.

Proposition 2. Let S be a set of relations on the domain D and consider the relation
J = {(x, y, z, w) ∈ D4 | (x = y) ∨ (z = w)}. If J ∈ S then PolS = EndS.

Proof. Suppose that there exists a binary function g ∈ PolS depending on both
arguments, i.e., there exist values a0, a1, a2, b0, b1, b2 ∈ D such that a0 6= a1,
b1 6= b2, g(a0, a2) 6= g(a1, a2) and g(b0, b1) 6= g(b0, b2). Clearly, the vec-
tors j1 = (a0, a1, b0, b0) and j2 = (a2, a2, b1, b2) belong to J , but the vector
(g(a0, a2), g(a1, a2), g(b0, b1), g(b0, b2)) is absent from J . Therefore the function g
cannot be a polymorphism of a set of relations containing J . From any function f of
arity ar(f) > 2 we can always produce a binary function by variable identification. ut

Since the number of endomorphisms over a finite domain is always finite, we are en-
sured to obtain a finite complexity characterization for MCSP.

4 Complexity of MCSP(S)

We will exhibit a dichotomy of MCSP(S) complexity characterized by a simple cri-
terion. It is easier to prove this dichotomy for MCSP(f(S)) where f is a permutation
keeping invariant the set S. We need the following proposition adapted from Jeavons [5]
showing that the problems MCSP(S) and MCSP(f(S)) are logspace-equivalent.

Proposition 3 (Jeavons [5]). Let S be a set of relations on D and f be an unary func-
tion on D. Let f(S) = {f(R) | R ∈ S}. If each relation R ∈ S is closed under f then
MCSP(f(S)) is logspace-equivalent to MCSP(S).

Proof. Suppose that each relation R ∈ S is closed under f . Let ϕ(x) be an instance
of MCSP(f(S)). We have a formula ϕ(x) where literals R(x1, . . . , xk) are constructed
from relations R ∈ f(S). According to the hypothesis, all relations R ∈ S are closed
under f , i.e. the inclusion f(R) ⊆ R holds for all R ∈ S. We deduce that ϕ(x) is also
an instance of MCSP(S).

Take a formula ϕ(x) being an instance of MCSP(S). It can be transformed by a
logspace reduction to an instance ϕ′(x) of MCSP(f(S)) by replacing each literal con-
structed from a relation R by a literal constructed from f(R). Moreover, because R
is closed under f , we have f(R) ⊆ R and we derive that all solutions of ϕ′(x) are
also solutions of ϕ(x). Conversely, if h is a solution of ϕ(x) then f(h) is a solution of
ϕ′(x). Thus we have a logspace-equivalence among MCSP(f(S)) and MCSP(S). ut

We will study monotone constraint satisfaction problems MCSP(S) through sets of
functions F satisfying Inv F = S. The following propositions prove that MCSP(S) is
polynomial if [F] contains a constant function, and it is NP-complete otherwise.

Proposition 4. Let F be a set of unary functions such that EndS = [F] for a set of
relations S. If [F] contains a constant function then MCSP(S) is polynomial.

Proof. If the endomorphisms of S contain a constant function fd(x) = d for all x ∈ D,
then for the set of relations 〈S〉 invariant under [F], each relation R ∈ 〈S〉 contains
a d-vector, i.e. a mapping of each variable to the value d. Therefore each instance of
MCSP(S) is satisfiable by a d-vector. ut

Lemma 5. Let [F] contain no constant functions. Let f ∈ [F] be a function with the
smallest cardinality of ran f . Then End f(S) contains only permutations.

Proof. Suppose there is a function g ∈ End f(S) not being a permutation. Necessar-
ily g is not injective, i.e. the inclusion ran g (ran f holds. This is a contradiction with
the fact that the cardinality of ran f is the smallest among all functions in [F]. ut

Proposition 6. Let F be a set of unary functions such that the clone [F], equivalent to
EndS for a set of relations S, does not contain constant functions. Then MCSP(S) is
NP-complete.

Proof. We adapt the proof of Proposition 5.6 from [5]. Let [F] be without constant
functions. Let f ∈ [F] be a function with minimal cardinality of its range ran f . By
Lemma 5, we know that End f(S) contains only permutations. Since [F] does not
contain constant functions, we also know that cardinality of ran f satisfies the condition
|ran f | ≥ 2. We have to separate two cases.

If |ran f | = 2, then we assume without loss of generality that ran f = {0, 1}. The
set End f(S) contains only permutations on {0, 1}. Let RNAE be the relation {0, 1}3r
{000, 111}. It is clear that relation RNAE is closed under every permutations on {0, 1}.
Hence we have the inclusion End f(S) ⊆ EndRNAE . The relation RNAE gives rise
to the NOT-ALL-EQUAL-3SAT problem, known to be NP-complete. We conclude that
MCSP(f(S)) is NP-complete.

Let now |ran f | ≥ 3. The set of relations Inv End(f(S)) is closed under per-
mutations on ran f . In particular, it contains the set of relations Q ⊆ D2 where
Q = {a1, a2, . . . , ak}2 r {(a1, a1), (a2, a2), . . . , (ak, ak)}, such that the elements a1,
. . . , ak present in the relation satisfy the identity |{a1, a2, . . . , ak}| = |ran f |. Relations
in Q are the valid valuations for all instances of the |ran f |-coloring problem. This prob-
lem is known to be NP-complete since |ran f | ≥ 3. We conclude that MCSP(f(S)) is
also NP-complete in this case.

We have seen in Proposition 3 that the problem MCSP(f(S)) is logspace-equivalent
to MCSP(S). We conclude that MCSP(S) is NP-complete. ut

From Propositions 4 and 6 we derive the main theorem of this section.

Theorem 7. The monotone constraint satisfaction problem MCSP(S) is polynomial if
the set EndS contains a constant function. Otherwise, it is NP-complete.

We have presented a very simple dichotomy condition for the problem MCSP(S) on a
finite domain D. To decide this condition, it is sufficient to check if the endomorphisms
set EndS contains a constant function. The endomorphism set EndS is always equal
to the clone [F] for some set of functions F .

We can also consider the monotone CSPs starting from a set of functions F . Given a
set of unary functions, we consider the problem MCSP(Inv F). An interesting question
from a complexity point of view is to ask now, given a set of unary functions F , if the
clone [F] contains a constant function. This meta-problem is treated in the next section.

5 Complexity of Clones

To determine if a composition of functions from the set F constructs a constant func-
tion, one has to compute at least a part of the clone [F]. Salomaa [8] calls class member-
ship problem the question to decide, given a set of functions F and a function class C,

whether the clone [F] contains a function belonging to C. Salomaa proved this problem
to be NP-hard. We will show that it is even NP-complete if C is the class of constant
functions. However, it is interesting to note that we are working on constraint satisfac-
tion problem where the domain size is fixed. We will see that this allows us to prove the
class membership problem to be fixed-parameter tractable (FPT).

We need first a result by Salomaa [8] allowing us to bind the combination depth of
functions belonging to a set F to obtain a constant function. This bound will be useful
for the NP-membership proof in the sequel.

Proposition 8 (Salomaa [8]). Let F be a set of functions without constant functions.
Let D be the functions domain and n the domain size. Each constant function fc on D
verifies the condition Depth(fc) ≤ n3/2− 3n2/2 + 2n.

Following Salomaa [8], it is not necessary to go beyond this polynomial bound in
order to find a constant function in [F]. Once arrived at this bound without finding a
constant function, we know that there are no constant functions in [F].

Proposition 9. The class membership problem is NP-complete if C is the class of con-
stant functions.

Proof. We know from Salomaa [8] that this problem is NP-hard. We just have to show
that it is also in NP. By Proposition 8, we know that the depth of every constant function
is limited by n3/2− 3n2/2 + 2n, with n being the domain size. A certificate fc cannot
be longer than this bound. We have to check two conditions. First, that each function
composing the sequence fc is in F , and second that fc is a constant function. The first
step is obviously in O(n3. |F |), and the second step asking to compute fc is in O(n4)
because we have to compute n values n3 times. Notice that |F | is the number k of
functions in F times the size of a function, which is n. Hence, the certificate fc has a
size depending of n, and it can be decided in O(k.n4) whether fc is a constant function.
So the class membership problem is in NP if C is the class of constant function, and
thus this problem is NP-complete. ut

We now focus on the complexity of the problem to determine if a constant function
can be obtained from a function set F , i.e. the class membership problem where C is
the class of constant functions. If we assume that D has a fixed size, we can consider
the following parametric class membership problem version:

Problem: CLASS MEMBERSHIP PROBLEM
Input: A set of functions F .
Parameter: The domain size n.
Question: Does the clone [F] contain a constant function?

We will show that the complexity of this problem is fixed-parameter tractable. We
begin to introduce this complexity class.

Definition 10 (Downey & Fellows [3]). A parametric problem P is fixed-parameter
tractable, or FPT, if there exists an algorithm taking inputs (I, k), where I is the prin-
cipal part of input and k the parameter, and deciding if the membership (I, k) ∈ P
holds in time f(k). |I|c, with f being an arbitrary function and c a constant.

Algorithm 1 Class Membership Problem
1: Q← {fi | fi ∈ F}
2: S ← ∅
3: while Q 6= ∅ do
4: f ← dequeue(Q)
5: S ← S ∪ {f}
6: for all fi ∈ F do
7: g = fi ◦ f
8: if g is a constant function then
9: return “YES”

10: end if
11: if g /∈ S then
12: enqueue(Q, g)
13: end if
14: end for
15: end while
16: return “NO”

Theorem 11. The parametric class membership problem for a set of unary functions F
is fixed-parameter tractable and it can be decide in time O(nn. |F |), where n is the
domain size parameter.

Proof. It is sufficient to exhibit an algorithm deciding the class membership problem,
taking as parameter the domain size n, and terminating in O(f(n). |F |c) for some con-
stant c. Thus the proof is relative to complexity of Algorithm 1.

First, we prove that Algorithm 1 is sound and terminating. Notice that Q is the set
of functions we have to treat (represented by a queue) and S the set of already produced
functions. At the beginning Q is instantiated to F . For each element in Q, the algorithm
composes them with each function in F , and puts these combinations into Q if they are
new (that is, not in S). The following property is the loop invariant: Q never contains
twice the same function. Every possible function originating from a combination of F
will be explored by the algorithm and tested whether it is a constant function, showing
the algorithm soundness.

Since the number of unary functions on a finite domain of size n cannot be greater
that nn, the size of Q cannot pass this limit. From Line 11 follows that the queue Q
cannot contain twice the same function and Line 4 shows that an element is removed
from Q at each pass through the while loop. Hence Algorithm 1 terminates.

Let us analyze the complexity of Algorithm 1. Lines 1 and 2 are just instantiations.
Line 3 activates a loop executed while Q is not empty. We have seen that |Q| ≤ nn.
Lines 4 and 5 are executed in constant time. Line 6 does not depend on the size of F and
complexity of Lines 7 to 13 depends on the choice of data structures. If we choose to
use a hash table to represent the set S, where the length of collisions lists is proportional
to n, these lines are executed in O(n). Clearly Algorithm 1 runs in time O(nn. |F |) and
allows us to conclude that the class membership problem is fixed-parameter tractable,
where n is the parameter. ut

6 Complexity of Clones on Ternary Domains

The meta-problem for MCSP on ternary domains can be treated more efficiently than
the general meta-problem. Actually, we do not have to compute [F], even a part of it, to
know if there exists a combination of functions in F that leads to a constant function.
To know if it is possible to produce such a constant function, it is sufficient to check if
the functions in F verify the subsequent conditions. We first note the following fact.

Remark 12. Kernels of functions on a ternary domain are limited to only one equiva-
lence class. This can be easily verified by the pigeonhole principle. Moreover, the size
of these kernels can only be equal to 0, 2 or 3. Therefore we identify in the sequel the
kernel of a unary function over a ternary domain with its singleton equivalence class.

Lemma 13. Let F be a set of functions without constants. The clone [F] contains a
constant function fc if and only if there exists two functions fa, fb ∈ [F] such that
fc = fa ◦ fb and ran fb ⊆ ker fa.

Proof. The only-if implication is obvious, therefore we focus on the if-implication. Let
fc ∈ [F] be a constant function. Then fc must be a composition of two functions fa

and fb — possibly obtained by composition — since F does not contain any constant
function. Without loss of generality, we can assume that fa and fb are non-constant
functions such that fc = fa ◦ fb.

Suppose that for every equivalence class [d]fa ∈ ker fa, we have ran fb * [d]fa . Let
x, y ∈ ran fb such that, for every [d]fa we have {x, y} * [d]fa . Then fa(x) 6= fa(y),
but since x, y ∈ ran fb, there must exist x′, y′ ∈ D such that fb(x′) = x and fb(y′) = y.
Thus (fa ◦ fb)(x′) 6= (fa ◦ fb)(y′), i.e. fc(x′) 6= fc(y′). This is a contradiction with the
fact that fc is a constant function. ut

From the aforementioned lemma we immediately derive the following corollary.

Corollary 14. If there exist two functions fa and fb such that ran fb = ker fa, then the
composition fa ◦ fb is a constant function.

In addition to Lemma 13, we show some useful results on the range and kernel set
of functions in the sequel.

Lemma 15. Let f, g ∈ F . The following conditions hold:
(i) ran(f ◦ g) ⊆ ran f and ker g ⊆ ker(f ◦ g);

(ii) if ran g * ker f and |ker f | = 2 then ran(f ◦ g) = ran f ;
(iii) if ran g * ker f and |ker g| = 2 then ker g = ker(f ◦ g).

Proof. Every unary function f is monotone, i.e., if A ⊆ B then f(A) ⊆ f(B) holds
for all subsets A,B of D. Since ran g ⊆ D and f is monotone, we have f(ran g) ⊆
f(D). Moreover, f(ran g) is ran(f ◦ g) and f(D) is ran f . Therefore the inclusion
ran(f◦g) ⊆ ran f holds. Let x, y ∈ ker g. We have g(x) = g(y), therefore (f◦g)(x) =
(f ◦ g)(y), i.e. x, y ∈ ker(f ◦ g).

Let ran g * ker f and |ker f | = 2. We have to show that ran f ⊆ ran(f ◦ g). Let
y ∈ ran f . Suppose that for all x ∈ ran g, the inequality f(x) 6= y holds. Let z ∈ ran f ,

with z 6= y. So for all x ∈ ran g, we have f(x) = z since |ker f | = 2, which implies
ran g ⊆ ker f : contradiction with the assumption.

Let ran g * ker f . We have to show that ker(f ◦g) ⊆ ker g. Suppose that there exist
x, y ∈ ker(f ◦ g) such that g(x) 6= g(y). Since |ker g| = 2, we have {g(x), g(y)} =
ran g. However the equality (f ◦ g)(x) = (f ◦ g)(y) holds, so we have the inclusion
ran g ⊆ ker f , which is a contradiction. Thus, for all x, y ∈ ker(f ◦ g), we have
x, y ∈ ker g. ut

Corollary 16. Let {f, g} = F such that ran g * ker f , ran f * ker g and |ker f | =
|ker g| = 2. If ran f = ran g then for every function h ∈ [F] we have ranh = ran f . If
ker f = ker g then for every function h ∈ [F], we have ker h = ker f .

We need the notions of circular and swap permutation on a ternary domain to
present our main result.

Definition 17. A circular permutation c on D = {0, 1, 2} is a permutation satisfying
the condition c(x) = (x+k) mod |D|with k ∈ D, for all x ∈ D. A swap permutation s
on D = {0, 1, 2} is a permutation satisfying the conditions s(x) = y, s(y) = x and
s(z) = z, for distinct x, y, z ∈ D. The set {x, y} is called swap s.

We can now introduce the main result of this section, dividing it into two parts.

Proposition 18. Let F a set of functions. If F satisfies one of the following conditions,
then there exists a constant function in [F]. The conditions are:

(i) there exists a constant function f ∈ F ;
(ii) there exist f, g ∈ F (not necessarily distinct) such that ran f = ker g;

(iii) there exist f, c ∈ F such that |ker f | = 2 and c is a circular permutation;
(iv) there exist f, s ∈ F such that |ker f | = 2 and s is a swap permutation where

swap s 6= ran f and swap s 6= ker f ;
(v) there exist f, s1, s2 ∈ F such that |ker f | = 2 and s1, s2 are swap permutations

satisfying the condition swap s1 6= swap s2.

Proof. Case (i) is obvious. Case (ii) follows from Corollary 14. We notice here that
the existence of f and g satisfying ran f ⊆ ker g implies either ran f = ker g, or
|ker g| = 3, i.e g is a constant.

Case (iii) is obvious by (ii) if ran f = ker f . Otherwise, let ran f = {x, y} and
ker f = {y, z} with x, y, z ∈ D all different. Notice that ker(c2 ◦ f) = ker(c ◦ f) =
ker f . There are two possibles cases: (1) ran(c ◦ f) = {y, z}, hence by (ii) c ◦ f is a
constant function; (2) ran(c ◦ f) = {x, z}. It is easy to see that ran(c2 ◦ f) = {y, z}.
By (ii), c2 ◦ f is a constant function.

Case (iv) is also obvious by (ii) if ran f = ker f . Otherwise, we have s(ran f) =
ker f . Thus, for all x ∈ D we have (s ◦ f)(x) = ker f , i.e. ran(s ◦ f) = ker f , and we
conclude by (ii) that (f ◦ s ◦ f) is a constant function.

Case (v) is obvious by (ii) if ran f = ker f . Otherwise, since we have swap s1 6=
swap s2, the composition s1 ◦ s2 necessarily produces a circular permutation. We can
conclude by (iii). ut

We will see now that the conditions listed in Proposition 18 are necessary to get a
constant function in [F].

Proposition 19. Let F be a set of functions satisfying no condition from Proposition 18.
Then there is no constant function in [F].

Proof. If F does not verify any condition of Proposition 18, then we are in one of these
cases:
(1) F contains only permutations;
(2) for each f ∈ F we have |ker fi| = 2 and for all fi, fj ∈ F (eventually fi = fj),

we have ran fi 6= ker fj and ran fj 6= ker fi.;
(3) F satisfies Condition 2 and contains also swap permutations with the same swap

set, such that for all fi ∈ F with |ker fi| = 2, for all swap permutations sk ∈ F ,
we have swap sk = ker fi or swap sk = ran fi. Notice that both are impossible
because we have ker fi 6= ran fi.

Case (1) is obvious. If F is a set of permutations, then [F] is a set of permutations,
too. By the pigeonhole principle, case (2) implies ker fi = ker fj , or ran fi = ran fj ,
or both, for all fi, fj ∈ F . From Corollary 16, we know that ran fi = ran fj for all
fi, fj ∈ F implies that every f ∈ [F] verifies the equality ran f = ran fi. Since
|ker fi| = 2 implies |ker f | = 2, so f cannot be a constant function. We can apply the
same argument for the case where ker fi = ker fj for all fi, fj ∈ F .

Like in case (2), we have for all fi, fj ∈ F the equations ker fi = ker fj , or
ran fi = ran fj , or both. We distinguish four cases. Let ran fi = ran fj , for all fi, fj ∈
F , and swap sk = ran fi. It is clear that ran(sk ◦ fi) = ran(fi ◦ sk) = ran fi. Since
|ker fi| = 2, we also have |ker(sk ◦ fi)| = |ker(fi ◦ sk)| = 2, hence sk ◦ fi and
fi ◦ sk cannot be constant functions. Now let swap sk = ker fi, for a fi ∈ F . We must
have ker fi = ker fj for all fi, fj ∈ F because otherwise there exists fk ∈ F such
that swap sk = ran fk, and thus ker fk = ran fi which constitutes a contradiction.
Therefore we have ker(sk◦fi) = ker(fi◦sk) = ker fi. Since |ker fi| = 2, we conclude
that there is no composition producing a constant function. With the same arguments,
we see that we cannot get a constant function if ker fi = ker fj for all fi, fj ∈ F ,
whenever swap sk = ran fi or swap sk = ker fi. ut

Theorem 20. Given a set of functions F on a ternary domain, the problem to know
whether the clone [F] contains a constant function can be decided in polynomial time.

Proof. By Propositions 18 and 19, we know that [F] contains a constant function if and
only if F satisfies one of the conditions in Proposition 18. The satisfiability test of each
condition can be done in polynomial time. For case (i), we have to test for all f ∈ F
whether f is a constant function. This condition can be verified in time O(|F |). For
case (ii), we are looking for f, g ∈ F , for which we compute ker f and ran g, such that
ran g ⊆ ker f . The verification of condition (ii) is done in time O(|F |2). For case (iii),
we are looking for f ∈ F such that |ker f | = 2 and for a circular permutation c ∈ F .
This can be verified in time O(|F |). For case (iv), we have to check for all f, s ∈ F
if |ker f | = 2, if s is a swap permutation, followed by a check if swap s 6= ker f and
swap s 6= ran f . This can be verified in time O(|F |2). Finally for case (v), we are
looking for f ∈ F such that |ker f | = 2 and for s1, s2 ∈ F such that s1 and s2 are
swap permutations, such that swap s1 6= swap s2. This is verified in time O(|F |2). ut

We have shown a polynomial-time algorithm concerning the meta-problem on a
ternary domain. Despite its complexity in O(|F |2) which is less efficient than the gen-
eral meta-problem algorithm in O(nn. |F |), with the constant n = 3 for the ternary
case, this algorithm use a method allowing to skip the computation, even partially, of
the clone [F]. Thus, this method constitute a serious approach for obtaining polynomial-
time algorithms more efficient than the general meta-problem algorithm.

7 Concluding Remarks

We analyzed the computational complexity of monotone constraint satisfaction prob-
lems, allowing also the disjunction connective to be applied. We obtained a complete
characterization expressed by a Dichotomy Theorem, distinguishing between tractable
and NP-complete instances. The tractability condition turned out to be the closure of
the constraints under a constant function. Since the endomorphism set EndS is equal to
the clone [F] generated from a set of unary functions F , it is also interesting to study the
meta-problem of the tractability condition. This means, given a set of unary functions F ,
whether the clone [F] contains a constant function. We showed that the meta-problem is
NP-complete if the domain is part of the input, but it is fixed-parameter tractable, with
an algorithm running in time O(nn |F |), if we consider the domain as a parameter. We
performed a special complexity analysis for the meta-problem of the ternary domain,
for which we deduced conditions ensuring the presence of a constant function in the
clone [F] without the necessity of computing (at least a part of) the functions in [F].

References

1. A. A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set.
Journal of the Association for Computing Machinery, 53(1):66–120, 2006.

2. D. Cohen, P. Jeavons, P. Jonsson, and M. Koubarakis. Building tractable disjunctive con-
straints. Journal of the Association for Computing Machinery, 47(5):826–853, 2000.

3. R. G. Downey and M. R. Fellows. Parametrized Complexity. Springer-Verlag, 1999.
4. T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and con-

straint satisfaction: a study through Datalog and group theory. SIAM Journal on Computing,
28(1):57–104, 1998.

5. P. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200(1-2):185–204, 1998.

6. M. Krasner. Une généralisation de la notion de corps. Journal de Mathématiques pures et
appliquées, 17:367–385, 1938.

7. R. Pöschel. Galois connections for operations and relations. In K. Denecke et al, editors,
Galois Connections and Applications, pages 231–258. Kluwer, 2004.

8. A. Salomaa. Composition sequences for functions over a finite domain. Theoretical Com-
puter Science, 292(1):263–281, 2003.

9. T. J. Schaefer. The complexity of satisfiability problems. In Proceedings 10th Symposium
on Theory of Computing (STOC’78), San Diego (California, USA), pages 216–226, 1978.

10. Yu. I. Yanov and A. A. Muchnik. On the existence of k-valued closed classes that have no
bases. Doklady Akademii Nauk SSSR, 127:44–46, 1959. In Russian.

