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Santiago Ontañón1, Gabriel Synnaeve2, Alberto Uriarte1, Florian Richoux3,
David Churchill4, and Mike Preuss5

1 Computer Science Department at Drexel University, Philadelphia, PA, USA.
{santi,albertouri}@cs.drexel.edu

2 Cognitive Science and Psycholinguistics (LSCP) of ENS Ulm, Paris, France.
gabriel.synnaeve@gmail.com

3 Nantes Atlantic Computer Science Laboratory (LINA), Univ. Nantes, France.
florian.richoux@univ-nantes.fr

4 Computing Science Department of the University of Alberta, Edmonton, Canada.
cdavid@cs.ualberta.ca

5 Department of Computer Science of Technische Universität Dortmund, Germany.
mike.preuss@cs.tu-dortmund.de

Synonyms

Real-Time Strategy games; RTS games; Artificial Intelligence; AI; Game AI

Definition

Real-Time Strategy (RTS) games is a sub-genre of strategy games where players
need to build an economy (gathering resources and building a base) and mili-
tary power (training units and researching technologies) in order to defeat their
opponents (destroying their army and base). Artificial Intelligence problems re-
lated to RTS games deal with the behavior of an artificial player. This consists
among others to learn how to play, to have an understanding about the game
and its environment, to predict and infer game situations from a context and
sparse information.

Introduction

The field of Real-Time Strategy (RTS) game Artificial Intelligence (AI) has
advanced significantly in the past few years, partially thanks to competitions as
the “ORTS RTS Game AI Competition” (held from 2006 to 2009), the “AIIDE
StarCraft AI Competition” (held since 2010), and the “CIG StarCraft RTS AI
Competition” (held since 2011). Based on the work work presented in [39], here
we first define RTS games, then list the open problems in creating AI for RTS
games, and finally point to the approaches that have been proposed to address
these problems.



Real-Time Strategy Games

From a theoretical point of view, the main differences between RTS games and
traditional board games such as Chess are:

– RTS games are simultaneous move games, where more than one player can
issue actions at the same time.

– Action in RTS games are durative, i.e. actions are not instantaneous, but
take some amount of time to complete.

– RTS games are “real-time”, which actually means is that each player has a
very small amount of time to decide the next move, and that, in contrast
to turn-based games, the game keeps advancing even if a player does not
execute any actions. Compared to Chess, where players may have several
minutes to decide the next action, in StarCraft, a popular RTS game, the
game executes at 24 frames per second, which means that players can act as
fast as every 42ms, before the game state changes.

– Most RTS games are partially observable: players can only see the part of
the map that has been explored. This is referred to as the fog-of-war.

– Most RTS games are non-deterministic: some actions have a chance of suc-
cess, and the amount of damage dealt by different units is sometimes stochas-
tic.

– And finally, the complexity of these games, both in terms of state space size
and in terms of number of actions available at each decision cycle is very
large. For example, the state space of Chess is typically estimated to be
around 1050, heads up no-limit Texas holdem poker around 1080, and Go
around 10170. In comparison, the state space of StarCraft in a typical map
is estimated to be many orders of magnitude larger than any of those, as
discussed in the next section.

For those reasons, standard techniques used for playing classic board games,
such as game tree search, cannot be directly applied to solve RTS games without
the definition of some level of abstraction, or some other simplification. Inter-
estingly enough, humans seem to be able to deal with the complexity of RTS
games, and are still vastly superior to computers in these types of games [6]. For
those reasons, a large spectrum of techniques have been attempted to deal with
this domain, as we will describe below.

In the past few years, StarCraft: Brood War (an immensely popular RTS
game released in 1998 by Blizzard Entertainment) has become the standard
testbed for evaluating AI techniques in RTS games. StarCraft is set in a science-
fiction based universe where the player must choose one of the three races: Ter-
ran, Protoss or Zerg. In order to win a StarCraft game, players must first gather
resources (minerals and Vespene gas). As resources become available, players
need to allocate them for creating more buildings (which reinforce the economy,
and allow players to create units or unlock stronger units), research new tech-
nologies (in order to use new unit abilities or improve the units) and train attack
units. Units must be distributed to accomplish different tasks such as reconnais-
sance, defense and attack. While performing all of those tasks, players also need



to strategically understand the geometry of the map at hand, in order to decide
where to place new buildings (concentrate in a single area, or expand to different
areas) or where to set defensive outposts. Finally, when offensive units of two
players meet, each player must quickly maneuver each of the units in order to
fight a battle, which requires quick and reactive control of each of the units.

From a theoretical point of view, the state space of a StarCraft game for
a given map is enormous. For example, consider a typical 128 ˆ 128 map. At
any given moment there might be between 50 to 400 units in the map, each
of which might have a complex internal state (remaining energy and hit-points,
action being executed, etc.). This quickly leads to an immense number of possible
states (way beyond the size of smaller games, such as Chess or Go). For example,
just considering the location of each unit (with 128 ˆ 128 possible positions per
unit), and 400 units, gives us an initial number of 16384400 « 101685. If we add
the other factors playing a role in the game, such as resources, hit-points, energy,
research status, cool-down timers, etc., we obtain even larger numbers (see [39]
for a more in-depth description of the complexity of StarCraft).

Challenges in RTS Game AI

Early research in AI for RTS games [5] identified the following six challenges:
Resource management, Decision making under uncertainty, Spatial and tempo-
ral reasoning, Collaboration (between multiple AIs), Opponent modeling and
learning, and Adversarial real-time planning. While there has been a significant
work in many, others have been untouched (e.g. collaboration). Moreover, recent
research in this area has identified several additional research challenges, such
as how to exploit the massive amounts of existing domain knowledge (strategies,
build-orders, replays, and so on). Thus, the challenges in RTS game AI can be
grouped in six main different areas, described below.

Planning As mentioned above, the size of the state space in RTS games is much
larger than that of traditional board games such as Chess or Go. Additionally,
the number of actions that can be executed at a given instant of time is also
much larger. Thus, standard adversarial planning approaches, such as game tree
search are not directly applicable. As we elaborate later, planning in RTS games
can be seen as having multiple levels of abstraction: at a higher level, players
need long-term planning capabilities, in order to develop a strong economy in
the game; at a low level, individual units need to be moved in coordination to
fight battles taking into account the terrain and the opponent. Techniques that
can address these large planning problems by either sampling, or hierarchical
decomposition do not yet exist.

Learning Given the difficulties in playing by directly using adversarial planning
techniques, many research groups have turned attention to learning techniques.
We can distinguish three types of learning problems in RTS games:



– Prior learning: How can we exploit available data, such as existing replays,
or information about specific maps for learning appropriate strategies before
hand? A significant amount of work has gone in this direction.

– In-game learning: How can bots deploy online learning techniques that allow
them to improve their game play while playing a game? These techniques
might include reinforcement learning techniques, but also opponent model-
ing. The main problem again is the fact that the state space is too large and
the fact that RTS games are partially observable.

– Inter-game learning: What can be learned from one game that can be used to
increase the chances of victory in the next game? Some work has used simple
game-theoretical solutions to select amongst a pool of predefined strategies,
but the general problem remains unsolved.

Uncertainty Adversarial planning under uncertainty in domains of the size of
RTS games is still an unsolved challenge. In RTS games, there are two main
kinds of uncertainty. First, the game is partially observable, and players cannot
observe the whole game map (like in Chess), but need to scout in order to see
what the opponent is doing. This type of uncertainty can be lowered by good
scouting, and knowledge representation (to infer what is possible given what
has been seen). However, scouting also means deliberately reducing economic
progress in order to obtain information. Second, there is also uncertainty arising
from the fact that the games are adversarial, and a player cannot predict the
actions that the opponent(s) will execute. For this type of uncertainty, the AI,
as the human player, can only build a sensible model of what the opponent is
likely to do.

Spatial and Temporal Reasoning Spatial reasoning is related to each aspect
of terrain exploitation. It is involved in tasks such as building placement or
base expansion. In the former, the player needs to carefully consider building
positioning into its own bases to both protect them by creating defenses or
walls against invasions and to avoid bad configurations where large units could
be stuck. In base expansion, the player has to choose good available locations
to build a new base, regarding its own position and opponent’s bases. Finally,
spatial reasoning is key to tactical reasoning: players need to decide where to
place units for battle, favoring, for instance, engagements when the opponent’s
units are lead into a bottleneck.

Analogously, temporal reasoning is key in tactical or strategic reasoning.
For example, timing attacks and retreats to gain an advantage. At a higher
strategic level, players need to reason about when to perform long-term impact
economic actions such as upgrades, building construction, strategy switching,
etc. all taking into account that the effects of these actions are not immediate,
but longer term.

Domain Knowledge Exploitation In traditional board games such as Chess,
researchers have exploited the large amounts of existing domain knowledge to



create good evaluation functions to be used by alpha-beta search algorithms,
extensive opening books, or end-game tables. In the case of RTS games, it is
still unclear how the significantly large amount of domain knowledge (in the
forms or strategy guides, replays, etc.) can be exploited. Most work in this area
has focused on two main directions: (1) hard-coding existing strategies into bots
(so that bots only need to decide which strategies to deploy, instead of having to
solve the complete planning problem), and (2) mining large datasets of replays
[63, 55] to automatically extract strategies, trends or plans.

Task Decomposition Most existing approaches to play RTS games work by
decomposing the problem into a collection of smaller problems to be solved
independently. Specifically, a common subdivision is:

– Strategy: corresponds to the high-level decision making process. This is the
highest level of abstraction for the game comprehension. Finding an efficient
strategy or counter-strategy against a given opponent is key in RTS games,
and concerns the whole set of units a player owns.

– Tactics: are the implementation of the current strategy. It implies army and
building positioning, movements, timing, and so on. Tactics concerns a group
of units.

– Reactive control: is the implementation of tactics. This consists in moving,
targeting, firing, fleeing, hit-and-run techniques (also knows as “kiting”) dur-
ing battle. Reactive control focuses on a specific unit.

– Terrain analysis: consists in the analysis of regions composing the map:
choke-points, minerals and gas emplacements, low and high walkable grounds,
islands, etc.

– Intelligence gathering: corresponds to information collected about the oppo-
nent. Because of the fog-of-war, players must regularly send scouts to localize
and spy enemy bases.

In comparison, when humans play StarCraft, they typically divide their de-
cision making in a very different way. The StarCraft community typically talks
about two tasks:

– Micro: is the ability to control units individually (roughly corresponding to
Reactive Control above, and part of Tactics). A good micro player usually
keeps their units alive over a longer period of time.

– Macro: is the ability to produce units and to expand at the appropriate
times to keep your production of units flowing (roughly corresponding to
everything but Reactive Control and part of Tactics above). A good macro
player usually has the larger army.

The reader can find a good presentation of task decomposition RTS game AI
in [65]. Although the previous task decomposition is common, other task decom-
positions have been explored (see [39] for an overview of the task decomposition
used by several StarCraft bots).
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Fig. 1. RTS AI levels of abstraction and typical sub-problems associated with them:
Timings correspond to an estimate of the duration of a behavior switch in StarCraft.

Existing work on RTS Game AI

Systems that play RTS games need to address most, if not all, the aforementioned
problems together. Therefore, it is hard to classify existing work on RTS AI
as addressing the different problems above. For that reason, we will divide it
according to three levels of abstraction: strategy (which loosely corresponds to
“macro”), tactics, and reactive control (which loosely corresponds to “micro”).

Figure 1 illustrates how strategy, tactics, and reactive control are three points
in a continuum scale where strategy corresponds to decisions making processes
that affect long spans of time (several minutes in the case of StarCraft), reactive
control corresponds to low-level second-by-second decisions, and tactics sit in the
middle. Also, strategic decisions reason about the whole game at once, whereas
tactical or reactive control decisions are localized, and affect only specific groups
of units. Typically, strategic decisions constrain future tactical decisions, which in
turn condition reactive control. Moreover, information gathered while performing
reactive control, can cause reconsideration of the tactics being employed; which
could trigger further strategic reasoning.

The remainder of this section presents work toward addressing the previous
six open RTS game AI problems, grouped as work focused toward strategy, tac-
tics, or reactive control, as well as a final section dedicated to holistic approaches
that attempt to deal with all three levels at once.



Strategy

In the context of RTS games, high-level strategic reasoning has been addressed
using many AI techniques, like hard-coded approaches, planning, or machine
learning. We cover each of these approaches in turn.

Hard-coded approaches They have been extensively used in commercial RTS
games. The most common ones use finite state machines (FSM) [24] in order to
let the AI author hard-code the strategy that the AI will employ. The idea be-
hind FSMs is to decompose the AI behavior into easily manageable states, such
as “attacking”, “gathering resources” or “repairing” and establish the conditions
that trigger transitions between them. Commercial approaches also include Hi-
erarchical FSMs, in which FSMs are composed hierarchically. These hard-coded
approaches have achieved a significant amount of success, and, have also been
used in many academic RTS AI research systems. However, these hard-coded
approaches struggle to encode dynamic, adaptive behaviors, and are easily ex-
ploitable by adaptive opponents.

Planning Approaches using planning techniques have also been explored in the
literature. For example Ontañón et al. [38] explored the use of real-time case-
based planning (CBP) in the domain of Wargus (a Warcraft II clone). In their
work, they used human demonstration to learn plans, which are then composed
at run-time in order to form full-fledged strategies to play the game. In [34]
they improve over their previous CBP approach by using situation assessment
for improving the quality and speed of plan retrieval. Hierarchical Task-Network
(HTN) planning has also been explored with some success in the context of sim-
pler first-person shooter games [23]. Planning approaches offer more adaptivity
of the AI strategy compared to hard-coded approaches. However, the real-time
constraints of RTS games limit the planning approaches that can be applied,
HTN and case-based planning being the only ones explored so far. Moreover,
none of these approaches addresses any timing or scheduling issues, which are
key in RTS games. On notable exception is the work of Churchill and Buro [9],
who used planning in order to construct its economic build-orders, taking into
account timing constraints of the different actions.

Machine Learning Concerning machine learning-based approaches, Weber
and Mateas [63] proposed a data mining approach to strategy prediction and
performed supervised learning on labeled StarCraft replays. Dereszynski et al.
[15] used Hidden Markov Models (HMM) to learn the transition probabilities
of sequences of building construction orders and kept the most probable ones
to produce probabilistic behavior models (in StarCraft). Synnaeve and Bessière
[52] used the dataset of [63] and presented a Bayesian semi-supervised model to
learn from replays and predict openings (early game strategies) from StarCraft
replays. The openings are labeled by EM clustering considering appropriate fea-
tures. Then, in [53], they presented an unsupervised learning Bayesian model



for tech-tree prediction, still using replays. Finally, evolutionary approaches to
determine priorities of high level tasks were explored by Young and Hawes in
their QUORUM system [70], showing improvement over static priorities.

Case-Based Reasoning Also falling into the machine-learning category, a sig-
nificant group of researchers has explored case-based reasoning (CBR) [1] ap-
proaches for strategic decision making. For example Aha et al. [2] used CBR
to perform dynamic plan retrieval in the Wargus domain. Hsieh and Sun [25]
based their work on Aha et al.’s CBR model [2] and used StarCraft replays to
construct states and building sequences (“build orders”). Schadd et al. [47] ap-
plied a CBR approach to opponent modeling through hierarchically structured
models of the opponent behavior and they applied their work to the Spring RTS
game (a “Total Annihilation” clone). Jaidee et al. [27] study the use of CBR
for automatic goal selection, while playing an RTS game. These goals will then
determine which Q-tables to be used in a reinforcement learning framework. Fi-
nally, Čertický et al. [61] used CBR to build their army, based on the opponent’s
army composition, and they pointed out on the importance of proper scouting
for better results.

Scouting One final consideration concerning strategy is that RTS games are
typically partially observable. Games like StarCraft implement the “fog-of-war”
idea, which basically means that a player can only see the areas of the map close
to her own units. Areas of the map away from the field of view of individual units
are not observable. Players need to scout in order to obtain information about the
opponent’s strategy. The size of the state space in StarCraft prevents solutions
based on POMDPs from being directly applicable, and very few of the previous
approaches deal with this problem. Much work in RTS game AI assumes perfect
information all the time. For example, in the case of commercial games, most AI
implementations cheat, since the AI can see the complete game map at all times,
while the human player does not. In order to make the human player believe
the AI of these games does not cheat, sometimes they simulate some scouting
tasks as Bob Fitch described in his AIIDE 2011 keynote for the WarCraft and
StarCraft game series. Even if the StarCraft AI competition enforces fog-of-
war, which means that bots are forced to work under partial information, little
published research exists on this topic. A notable exception is the work of Weber
et al. [66], who used a particle model with a linear trajectory update to track
opponent units under fog-of-war in StarCraft. They also produced tactical goals
through reactive planning and goal-driven autonomy [67, 64], finding the more
relevant goal(s) to spawn in unforeseen situations.

Tactics

We will divide the work on mid-range tactical reasoning in RTS games in two
large groups: spatial reasoning and decision making (that has been addressed
both using machine learning and game tree search).



Spatial Reasoning The most common form of spatial reasoning in the liter-
ature of RTS games is terrain analysis. Terrain analysis supplies the AI with
structured information about the map. This analysis is usually performed off-
line, in order to save CPU time during the game. For example, Pottinger [43]
described the BANG engine implemented by Ensemble Studios for the game Age
of Empires II. This engine provides terrain analysis functionalities to the game
using influence maps and areas with connectivity information. Forbus et al. [16]
showed the importance to have qualitative spatial information for wargames, for
which they used geometric and pathfinding analysis. Hale et al. [21] presented a
2D geometric navigation mesh generation method from expanding convex regions
from seeds. Finally, Perkins [41] applied Voronoi decomposition (then pruning)
to detect regions and relevant choke points in RTS maps. This approach is im-
plemented for StarCraft in the BWTA6 library, used by most state of the art
StarCraft bots.

Another form of spatial reasoning that has been studied in RTS games is
walling. Walling is the act of intentionally placing buildings at the entrance of
your base to block the path and to prevent the opponent’s units from getting
inside. This technique is used by human StarCraft players to survive early ag-
gression and earn time to train more units. Čertický addressed this constraint
satisfaction problem using Answer Set Programming (ASP) [62]. Richoux et al.
[46] presented an alternative approach based on constraint programming and
local search, designed to be run-time.

Machine Learning Concerning tactical decision making, many different ap-
proaches have been explored such as machine learning or game tree search.
Hladky and Bulitko [22] benchmarked hidden semi-Markov models (HSMM)
and particle filters for unit tracking. Although they used first-person shooter
(FPS) games for their experimentation, the results apply to RTS games as well.
They showed that the accuracy of occupancy maps was improved using move-
ment models (learned from the player behavior) in HSMM. Kabanza et al. [28]
improve the probabilistic hostile agent task tracker (PHATT [17], a simulated
HMM for plan recognition) by encoding strategies as HTN, used for plan and in-
tent recognition to find tactical opportunities. Sharma et al. [48] combined CBR
and reinforcement learning to enable reuse of tactical plan components. Cadena
and Garrido [7] used fuzzy CBR (fuzzy case matching) for strategic and tactical
planning. [56] combined space abstraction into regions from [41] and tactical-
decision making by assigning scores (economical, defenses, etc.) to regions and
looking for their correspondences to tactical moves (attacks) in pro-gamers re-
plays. Finally, Miles [33] created the idea of IMTrees, a tree where each leaf
node is an influence map, and each intermediate node is a combination opera-
tion (sum, multiplication); Miles used evolutionary algorithms to learn IMTrees
for each strategic decision in the game involving spatial reasoning by combining
a set of basic influence maps.

6 http://code.google.com/p/bwta/



Game tree search These techniques have also been explored for tactical de-
cision making. Churchill and Buro [11] presented the ABCD algorithm (Alpha-
Beta Considering Durations), a game tree search algorithm for tactical battles in
RTS games. Chung et al. [8] applied Monte-Carlo planning to a capture-the-flag
version of Open RTS. Balla and Fern [4] applied the UCT algorithm (a Monte
Carlo Tree Search algorithm) to tactical assault planning in Wargus. To make
game tree search applicable at this level, abstract game state representations are
used in order to reduce the complexity. Uriarte and Ontañón [60, 59] explored
different game state abstractions in the context of Monte-Carlo Tree Search
for high-level tactical reasoning in StarCraft. Other algorithms, such as Greedy
Portfolio Search [10], perform abstraction at the level of actions, by employing a
collection of predefined “scripts”, and using these scripts as the possible actions
that the players can execute in the context of game tree search.

Reactive Control

Reactive control has been addressed mainly via the application of potential fields
or by using machine learning to learn good control policies. We also include work
on path-finding as part of reactive control.

Potential fields Potential fields and influence maps have been found to be use-
ful techniques for reactive decision making. Some uses of potential fields in RTS
games are: avoiding obstacles (navigation), avoiding opponent fire [58], or stay-
ing at maximum shooting distance [20]. Potential fields have also been combined
with A* path-finding to avoid local traps [18]. Hagelbäck and Johansson [19]
presented a multi-agent potential fields based bot able to deal with fog-of-war
in the Tankbattle game. Avery et al. [3] and Smith et al. [49] co-evolved influ-
ence map trees for spatial reasoning in RTS games. Danielsiek et al. [13] used
influence maps to achieve intelligent squad movement to flank the opponent in a
RTS game. Despite their success, a drawback for potential field-based techniques
is the large number of parameters that has to be tuned in order to achieve the
desired behavior. Approaches for automatically learning such parameters have
been explored, for example, using reinforcement learning [30], or self-organizing-
maps (SOM) [44]. We would like to note that potential fields are a reactive
control technique, and as such, they do not perform any form of lookahead. As
a consequence, these techniques are prone to make units stuck in local optima.

Machine Learning There has been a significant amount of work on using ma-
chine learning techniques for the problem of reactive control. Bayesian modeling
has been applied to inverse fusion of the sensory inputs of the units [54], which
subsumes potential fields, allowing for integration of tactical goals directly in
micro-management.

Additionally, there have been some interesting uses of reinforcement learning
(RL) [51]: Wender and Watson [68] evaluated the different major RL algorithms
for (decentralized) micro-management, which perform all equally. Marthi et al.



[32] employ concurrent hierarchical Q-learning (units Q-functions are combined
at the group level) RL to efficiently control units in a “one robot with multiple
effectors” fashion. Madeira et al. [31] advocate the use of prior domain knowl-
edge to allow faster RL learning and applied their work on a turn-based strategy
game. This is because the action space to explore is gigantic for real game setups.
It requires exploiting the existing structure of the game in a partial program (or
a partial Markov decision process) and a shape function (or a heuristic) [32].
Another approach has been proposed by Jaide and Muñoz-Avila [26] through
learning just one Q-function for each unit type, in order to cut down the search
space. Other approaches that aim at learning the parameters of an underlying
model have also been explored. For example Ponsen and Spronck [42] used evo-
lutionary learning techniques, but face the same problem of dimensionality. For
example, evolutionary optimization by simulating fights can easily be adapted
to any parameter-dependent micro-management control model, as shown by [40]
which optimizes an AIIDE 2010 micro-management competition bot.

Finally, approaches based on game tree search are recently being explored for
micro-management. Churchill et al. [12] presented a variant of alpha-beta search
capable of dealing with simultaneous moves and durative actions, which could
handle reactive control for situations with up to eight versus eight units.

Other research falling into reactive control has been performed in the field
of cognitive science, where Wintermute et al. [69] have explored human-like
attention models (with units grouping and vision of a unique screen location)
for reactive control.

Pathfinding Finally, although pathfinding does not fall under our previous def-
inition of reactive control, we include it in this section, since it is typically per-
formed as a low-level service, not part of either tactical nor strategical reasoning
(although there are some exceptions, like the tactical pathfinding of Danielsiek
et al. [13]). The most common pathfinding algorithm is A*, but its big problem is
CPU time and memory consumption, hard to satisfy in a complex, dynamic, real-
time environment with large numbers of units. Even if specialized algorithms,
such as D*-Lite [29] exist, it is most common to use A* combined with a map
simplification technique that generates a simpler navigation graph to be used
for pathfinding. An example of such technique is Triangulation Reduction A*,
that computes polygonal triangulations on a grid-based map [14]. Considering
movement for groups of units, rather then individual units, techniques such as
steering of flocking behaviors [45] can be used on top of a path-finding algorithm
in order to make whole groups of units follow a given path. In recent commercial
RTS games like StarCraft 2 or Supreme Commander 2, flocking-like behaviors
are inspired of continuum crowds (“flow field”) [57]. A comprehensive review
about (grid-based) pathfinding was recently done by Sturtevant [50].

Holistic Approaches

Finally, holistic approaches to address RTS AI attempt to address the whole
problem using a single unified method. To the best of our knowledge, with a



few exceptions, such as the Darmok system [36] (which uses a combination of
case-based reasoning and learning from demonstration) or ALisp [32], there has
not been much work in this direction. The main reason is that the complexity
of RTS games is too large, and approaches that decompose the problem into
smaller, separate, problems, achieve better results in practice. However, holistic
approaches, based, for example, on Monte Carlo Tree Search, have only been
explored in the context of smaller-scale RTS games [37]. Techniques that scale
up to large RTS games as StarCraft are still not available.

A related problem is that of integrating reasoning at multiple levels of ab-
straction. Molineaux et al. [35] showed that the difficulty of working with multi-
scale goals and plans can be handled directly by case-based reasoning (CBR), via
an integrated RL/CBR algorithm using continuous models. Reactive planning
[67], a decompositional planning similar to hierarchical task networks [23], al-
lows for plans to be changed at different granularity levels and so for multi-scale
(hierarchical) goals integration of low-level control. Synnaeve and Bessière [54]
achieve hierarchical goals (coming from tactical decisions) integration through
the addition of another sensory input corresponding to the goal’s objective.

Conclusions

This entry has defined real-time strategy (RTS) games from an AI point of view,
and summarized the set of open problems in RTS game AI. After that, we have
summarized existing work toward addressing those problems.

RTS games can be seen as a simulation of real complex dynamic environ-
ments, in a finite and smaller world, but still complex enough to study a series of
key interesting problems. Finding efficient techniques for tackling these problems
on RTS games can thus benefit other AI disciplines and application domains,
and also have concrete and direct applications in the ever growing industry of
video games.
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59. Uriarte, A., Ontañón, S.: Game-tree search over high-level game states in rts games.
In: Tenth Artificial Intelligence and Interactive Digital Entertainment Conference
(2014)
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