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Computer Science is no more

about computers than astron-

omy is about telescopes.

Edsger Dijkstra (1930�2002) 1
Introduction

It is di�cult to determine borders between Theoretical Computer Science
(TCS) and Mathematics. So far no clear separations have been made, and
everybody has its own way to express what TCS is. From my point of view,
this science belongs to Mathematics and could be de�ned as follow: Theoret-
ical Computer Science is the science which studies and treats mathematical
problems in an automatic way. My opinion is that this science is completely
independent from these machines that we call computers: they are conse-
quences of TCS applications. The computer scientist Edsger Dijkstra said
"Computer Science is no more about computers than astronomy is about tele-
scopes". This sentence is deeply true: computers are just tools for TCS, but
not studied objects.

Can TCS results be always applied to computers or other concrete pur-
poses? Hopefully no. Things which interest me the most in TCS are of theo-
retical aspect. Another sentence I completely agree from a famous scientist is
the following one, from the physicist Richard Feynman: "Physics is like sex:
sure, it may give some practical results, but that's not why we do it". This
is right for all theoretical sciences, like TCS. My vision of Mathematics and
theory in general is close to Hardy's one. Indeed, the mathematician God-
frey Hardy found that what is beautiful in Mathematics is its "uselessness",
that is, when theories in Mathematics do not �nd concrete applications in
the material world, by opposition of the "idea world" as he certainly would
call it himself: "The mathematician's patterns, like the painter's or the poet's
must be beautiful; the ideas, like the colours or the words must �t together
in a harmonious way. Beauty is the �rst test: there is no permanent place
in the world for ugly Mathematics. [. . .] A science is said to be useful if its
development tends to accentuate the existing inequalities in the distribution
of wealth, or more directly promotes the destruction of human life. [. . .] I
have never done anything 'useful'. No discovery of mine has made, or is
likely to make, directly or indirectly, for good or ill, the least di�erence to
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CHAPTER 1. INTRODUCTION

the amenity of the world... Judged by all practical standards, the value of
my mathematical life is nil; and outside mathematics it is trivial anyhow. I
have just one chance of escaping a verdict of complete triviality, that I may
be judged to have created something worth creating. And that I have created
something is undeniable: the question is about its value" in "A Mathemati-
cian's Apology" (1940). However, theory is of course useful in the sense that
it always �nds applications somewhere, for theory itself for instance, and
sometimes for some applications. Again, Hardy said "pure Mathematics is
on the whole distinctly more useful than applied. For what is useful above
all is technique, and mathematical technique is taught mainly through pure
Mathematics". I think that, unfortunately, every theoretical result �nds one
day directly or indirectly a way to be applied concretely.

Theoretical Computer Science contains many branches such as algo-
rithms, combinatorics, logic, proof theory, . . . The �eld for which we have a
special interest in this thesis is computational complexity. Intuitively, what
is it? It is the �eld where we study intrinsic di�culty of solving mechani-
cally a given problem. Roughly speaking, we distinguish easy problems, also
named tractable problems, from hard ones, named intractable problems. For
instance, imagine a maze for mouses starting by a unique path which meet
an intersection at a certain point: the path is divided in two ways (the left
and right way). Both paths will also be divided in two ways, and so on. We
obtain a maze corresponding to what we call a binary tree. Each path ends
either by an exit or a dead-end. Place a mouse at the beginning of such a
maze: the mouse has no smarter way than to try each path before �nding
the exit (if it exists). Thus, to know if there exists an exist in a maze with
n intersections the mouse has to run in 2n di�erent paths in the worth case
(that is, if the mouse is unlucky). This problem of deciding if a given maze
contains an exit or not is consider as a di�cult one (for a mouse) since the
number of tries is exponential in the size of the maze. Assume now we have
an overtrained mouse which is able to understand and to follow instructions
like "At the �rst intersection take left, then left, then right, then left, . . .".
If we put this mouse at the starting line of the maze with a valid sequence
of instructions (valid in the sense that the number of given instructions cor-
responds exactly to the number of intersections the mouse will cross), thus
the mouse will be easily able to decide if the given path leads to an exit or
not: the mouse has just to cross log n intersections (that is, the height of
the binary tree). This problem is consider as an easy one (for everybody)
since the number of tries is a polynomial in the size of the maze (here, even
a logarithm).

In this thesis, we focus on complexity of mathematical problems called
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Constraint Satisfaction Problems, or csp for short. Again, we illustrate this
notion with an example. A classical one is the scheduling of classes in a
high school: at the beginning of each academic year, one has to establish
a schedule which takes into account some constraints. For instance, a class
cannot have two lessons at the same moment, as well as a professor cannot
be in two classrooms at the same moment, or two professors in the same
classroom, etc. Finding a coherent scheduling which veri�es all constraints
of this type is a Constraint Satisfaction Problem. This scheduling problem,
as well as csp problems in general, are very di�cult problems.

However, we can consider the parametric version of the csp problem,
denoted csp(S) where the parameter S is a set of relations which represent
solutions of the constraints we are allowed to use to built an instance of our
problem. There exist some sets of relations which implies the tractability of
csp(S), such as sets of Horn relations for instance. These parameters are
what we call "islands of tractability", lost in an ocean of intractability. One
can wonder if there exists parameters leading to intermediate situations in
between tractability and intractability of the considered problem, that is, if
there exists a parameter S such that csp(S) is neither in P nor NP-complete,
that is, tractable or intractable. If the answer to this question is "no", then
one can wonder if there exists a way to split the set of all parameters into
two parts, one leading to tractable problems, the other one to intractable
problems, such that the borderline is clear and computable. In the 70's,
Schaefer answered these questions in [Sch78], showing the full classi�cation
of the complexity of csp(S) over a Boolean domain thanks to a Dichotomy
Theorem, telling that csp(S) is either in P or NP-complete depending a
simple dichotomy criterion on S.

The goal of research in complexity of csp is to extend Schaefer's result to
other cardinalities of a �xed domain, or to prove that such borderline does
not exist. So far, known results in this �eld exhibit a borderline between
tractable and intractable problems, leading to the conjecture that such a
borderline always exists. Indeed, Feder and Vardi conjectured in [FV98] the
existence of a Dichotomy Theorem for the problem csp(S) for every �nite
domains, that is, considered a �nite domain D and a set S of relations on
D, the problem csp(S) is either in P or is NP-complete. We will now tell
why an extension of Schaefer's theorem over higher cardinality of domain is
such a di�cult problem.

Schaefer did not realize he could use a very powerful tool to prove his
theorem: "The work presented here is similar in spirit to the classi�cation
by Post [...] but the generation operations are quite di�erent, and to the best
of our knowledge, none of the particulars of Post's proof carry over to this
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CHAPTER 1. INTRODUCTION

work" in [Sch78]. Indeed, we know today that the Post lattice is a very useful
tool and elegant way to prove the Schaefer's Dichotomy Theorem. However,
before introducing the Post lattice, we need to present the connection be-
tween the computational complexity of csp and universal algebra.

One of the most exploited way to study the complexity of csp is toward
tools brought by universal algebra. The link between the complexity of csp
and universal algebra has been revealed by Jeavons et al. in papers [JC95],
[JCG97] and [Jea98]. In their papers, they have shown that if a set S of
relations is closed under functions, named polymorphisms, it always leads
to the tractability or the intractability of csp(S), and this, for every �nite
domain. Moreover, Jeavons et al. proved that, given a set S of relations, the
set of polymorphisms of S form an algebraic structure named clone (even if it
is a slight abuse of language, we can denoted it as "the clone of S"). The set
of clones in a Boolean domain ordered by inclusion give us the Post lattice,
which is a countable in�nite lattice fully characterized by Post in [Pos41].
Thanks to this lattice, we can rewrite Schaefer's Dichotomy Theorem with
a characterization considering only polymorphisms of the parameter S. In-
deed, even if this lattice is (countable) in�nite, results from Jeavons et al.
permit us to deduce, for a given set S of relations, if csp(S) is in P, then
for all sets S′ of relations such that the clone of S′ contains the clone of S
we have csp(S′) in P, and if csp(S) is NP-complete, then for all sets S′ of
relations such that the clone of S′ is contained in the clone of S we have
csp(S′) NP-complete. A survey presenting the possibilities o�ered by the
Post lattice can be found in [CV08].

Nowadays, research in this �eld strongly rely on universal algebra to char-
acterize the complexity of csp problem and its extensions or logical problems
in general. The reader can �nd a collection of survey articles about the study
of the complexity of such problems with the help of universal algebra in
[CKV08]. Almost thirty years after Schaefer's Theorem, Bulatov proved in
[Bul06a] a Dichotomy Theorem for the complexity of csp(S) over a ternary
domain. One can wonder why it took so much times to extend Schaefer's re-
sults. The principal reason is that a powerful tool likes Post lattice does not
exist anymore. Indeed, Yanov and Muchnik proved in [YM59] that the num-
ber of these clones is uncountable for domains of cardinality higher than or
equals to three, leading thus to an uncountable lattice. Techniques presented
in the last paragraph are then no more available.

Since the complexity of csp(S) over a �nite domain (of arbitrary cardi-
nality, or even of cardinality greater than three) are very di�cult problems,
one can avoid the di�culty due to the uncountability of the clone lattice
by considering some restriction or extension of the original problem. Hence,
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1.1. OUTLINE OF THIS THESIS

one way to make easier the problem is to consider a sub-problem allowing
a countable lattice. For this, one can choose among others to enrich the
formalism of csp problems like in [Mar06] and [Mar08], or to force a certain
structure on the parameter S like in [CCHS08] and [CHKS08], or to force a
certain structure on the domain D like in [Sch78]. These two �rst ideas have
been chosen as starting ideas of this thesis.

1.1 Outline of this thesis

Chapter 2 is the chapter of preliminaries where we formally de�ne each
mathematical notion studied or used in several chapter of this thesis. Notions
which are speci�c to a chapter will be de�ned in the considered chapter.
Chapter 3 will present results obtained for Monotone Constraint Satisfac-
tion Problems. In this chapter, we have chosen to enrich the formalism of
csp with the disjunction, that is, constraints of a formula are not anymore
logically linked by conjunctions only but by a conjunction or a disjunction.
This extension allowed us to have a countable and even �nite clone lattice,
which was the original argument to study Monotone csp. Even if the lattice
does not �nally help us, we obtain a Dichotomy Theorem for the complexity
of the parametric monotone csp problem over every �nite domains. This
result has also been proved independently by Martin in the CoRR paper
[Mar06]. It has been published in [HR09] and contributes to the study of
model-checking of fragments of the �rst-order logic (see [Mar08]). We also
proved a Dichotomy Theorem for Monotone csp over countable in�nite do-
mains. This study has been published in [BHR09] and is in line the study
of constraint problems over in�nite domains (see for instance the survey
[Bod08]).
Chapter 4 will present results obtained for co-Boolean csp. We choose
here to force the following structure to the parameter S: Let f be a unary
function on a �nite domain D with a co-domain of size two. The graph of
f , denoted f•, is the relation f• = {(x, f(x)) | x ∈ D}. We force in this
chapter the parameter S to be a set of graphs of unary functions. Thus, an
instance of csp(S) is a conjunction of constraints of the form f(x) = y. This
restriction leads also to a countable (and again even �nite) clone lattice.
However, like for Chapter 3, this lattice was again too complicated to be
e�ciently used. This di�culty does not forbid us to prove a Dichotomy
Theorem for the complexity of homogeneous co-Boolean csp where all unary
functions composing our constraints share the same Boolean co-domain. This
theorem holds for every �nite domain. We also present the beginning of a
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CHAPTER 1. INTRODUCTION

proof for a conjectured Dichotomy Theorem for the complexity of co-Boolean
csp in general over a �nite domain. These works have been done with Miki
Hermann and Gustav Nordh and should be submitted soon. It is in line with
the study of csp over unary functions where an instance of this problem is a
conjunction of constraints of the form f(x) = y where f is a unary function
(with no condition on the co-domain). This problem has been proved by
[FMS04] to be as general (and then as di�cult) as the general csp problem,
that is, there exists a satis�able instance of the general csp problem if and
only if there exists a satis�able instance of the csp problem over unary
functions.
Chapter 5 certainly contains the most important contributions in this the-
sis. It is in line with works of Feder et al. since it deals with the complexity
of csp(S) over unary functions. This chapter presents the method of kernel
width, an innovating method which could be very useful to fully characterize
the complexity of such problem or some of its sub-problems. It contains three
main results (not with the same impact and importance). First, we show
that, for the csp(S) problem over unary functions on every �nite domain,
the linear kernel width implies the tractability of csp(S). This is the �rst
result available on every cardinality of �nite domain using the kernel width.
Moreover, this result was not known so far. Then, we present a Dichotomy
Theorem of the complexity of the csp(S) problem over unary functions on
a ternary domain via a criterion based on the kernel width. Despite the
fact that this result was already cover by Bulatov's result, this is the �rst
Dichotomy Theorem proved via the kernel width method. Finally, we prove
the NP-completeness of a speci�c homogeneous co-Boolean csp(S) problem
over every �nite domain D if the kernel width is higher than or equal to the
cardinality of D. Again, this result is cover by our result on homogeneous co-
Boolean csp in Chapter 4, but it is the �rst result of NP-completeness with
a criterion based on the kernel width. This result leads us to the conjecture
that, if this criterion is veri�ed, the csp(S) problem over unary functions is
intractable.
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2
Preliminaries

In this chapter, we formally de�ne the most general used and studied notions
in this thesis. Speci�c notions will be introduced at the beginning of each
chapters.

2.1 Computational complexity

Computational complexity is the study of intrinsic complexity, or di�culty,
of mathematical problems which can be treat automatically. We measure
this di�culty regarding to needed resources. These resources can be time
or space needed by a computational model to solve a given problem. Both
time complexity and space complexity are measured regarding to the input
size of the considered problem. Time complexity of a problem p is measured
with the number of needed operations to answer p.

We introduce in this section usual complexity classes of decision problems
which are L, P and NP. A complexity class is the class of problems which
can be solved within a certain time or space complexity. A decision problem
is a problem where the answer is either "yes" or "no".

Before introducing complexity classes, we need to formalize the notions
of language and Turing machine. We also present the notion of polynomial-
time many-one reduction.

Let p be a decision problem, and A the set of instances of p. We call
positive instance of p, or solution of p, an instance of p which leads to the
answer "yes", and we denote by A+ ⊆ A the set of positive instances of p.
We say that A+ is the language of the problem p. Thus, an instance x of p
is a solution of p if x ∈ A+.

In this thesis, we deal with decidable languages. A language is decidable
if a Turing machine recognizes it, and a Turing machine is a model of compu-
tation which can be see as a machine with one or more in�nite tapes where
moves a read-write head which acts regarding to the current state of the
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CHAPTER 2. PRELIMINARIES

machine and the current read symbol on the tape. The fact that a Turing
machine contains one or more tapes does not change its working or proper-
ties in the sense that a Turing machine with only one tape is as powerful as
a Turing machine with several ones, that is, if a language L is recognized
by a Turing machine with several tapes, then there exists a Turing machine
with one tape which also recognize L. We give here a formal de�nition of
the Turing machine.

De�nition 2.1.1 A Turing Machine is a 6-tuple (Q,Σ, δ, qs, qa, qr) where

• Q is the �nite set of states of the machine,

• Σ is a �nite alphabet which does not contain the special blank character
t,

• δ is the transition function de�ned as

δ : Q× (Σ ∪ {t})→ Q× (Σ ∪ {t})× {L,R},

• qs ∈ Q is the start state,

• qa ∈ Q is the accept state,

• qr ∈ Q is the reject state, with qr 6= qa.

Let's us explain how a Turing machine works. LetM be a Turing machine
with one tape. M receives an input x which is a �nite string composed of
elements from the given alphabet Σ. Usually, we write x := x0x1 . . . xn−1 for
a n-long string with x0, x1, . . ., xn−1 ∈ Σ. At the beginning, x is written on
the tape of M , the current state of M is qs, and the read-write head of M
is placed on the case containing the �rst character x0 of x. All cases of the
tape which are not �lled up with the input x contain the blank character t.
Let's attribute a number to each case of the tape as follow: the start case
containing x0 at the beginning will be named c0, and next cases to its right
will be denoted by c1 (containing x1), c2 (containing x2), and so on. Cases
to the left of c0 will be denoted by c−1, c−2, and so on. These cases contain
t at the beginning.

Now we can run the machine M . A run of M is a succession of steps,
which is the application of the function δ to the couple (q, e) where q is the
current state and e the character reads by the head of M . The function δ
output a triple (q′, e′, d) where q′ is a state in Q, not necessarily di�erent
from q, e′ a character in Σ ∪ {t} written in the case ci where the head is

14
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positioned, and d the direction toward we move the head. If d = L holds, we
move the head one step to the left, so to the case ci−1, and on the opposite if
we have d = R we move it one step to the right, that is to the case ci+1. The
current state of the machine is now q′, and the character reads by the head
is the one contained in the case ci−1 or ci+1, depending where we have move
the head. If the current state is qa, then the machine "accepts", i.e. the
input belongs to the language recognized by M , and if the current state is
qr, then the machine "rejects", so the input is not in the language recognized
by the machine. Notice that we can have the situation where a run never
reaches the state qa nor qr. Then we say that the machine M loops, that is,
it never halts. A language recognized by a Turing machine which loops on
certain inputs is called a semi-decidable language, since when the machine
loops, we actually never know if the machine loops or take some times to
�nish its computation.

We say that a Turing machineM is deterministic if its transition function
δ is deterministic, that is, for every couple (q, e) in Q × (Σ ∪ {t}), δ(q, e)
outputs a unique element in Q×(Σ∪{t})×{L,R}. If there exist some couple
(q, e) for which the values of δ(q, e) constitute a set V ⊆ Q×(Σ∪{t})×{L,R}
which is not a singleton, then we say that M is non-deterministic.

One fundamental notion in TCS which is constantly used in this thesis is
the notion of reduction of problems. We especially use the polynomial-time
many-one reduction (also know as Karp reduction) de�ned as follow.

De�nition 2.1.2 A language A is polynomial-time many-one reducible to
a language B if there exists a polynomial-time computable function f : A → B
such that, for every string ω, we have ω ∈ A if and only if f(ω) ∈ B. This
is denoted by A ≤p B, and we say that f is a polynomial-time many-one
reduction.

Thus, a polynomial-time many-one reduction from a problem p1 to a
problem p2, denoted by p1 ≤p p2, is a polynomial-time computable function
transforming an instance of p1 into an instance of p2 such that x is a positive
instance of p1 if and only if f(x) is a positive instance of p2. Remark that, for
every instance x of p1, we must have the size of f(x) polynomially bounded
by the size of x.

Moreover, we say that two problems p1 and p2 are polynomial-time equiv-
alent (in this thesis, equivalent for short), denoted by p1 ≡p p2, if both
p1 ≤p p2 and p2 ≤p p1 hold.

Another reduction used in this thesis is the logspace reduction. Rather
than formally de�ne it, we can modify De�nition 2.1.2 as follow: there is a
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logspace reduction from a language A to a language B, denoted by A ≤log B,
if the function f is logspace computable, that is, if the Turing machine
which compute f only uses a logarithmic number of cases on its working
tape regarding to the size of the input. Two problems p1 and p2 are logspace
equivalent, denoted by p1 ≡log p2, if both p1 ≤log p2 and p2 ≤log p1 hold.

The reader can �nd another formal de�nitions of Turing machine and
polynomial-time many-one reduction in [Sip97] or [Pap94].

Before introducing complexity classes used in this document, we need to
explain the big-O notation, also named asymptotic notation.

Notation 2.1.3 Let f and g be two functions f, g : N→ N. We write f(n) =
O(g(n)) if there exist two positive integers c and n0 such that for every
n ≥ n0, the equation f(n) ≤ c.g(n) holds. Thus, we say that g(n) is an
asymptotic upper bound of f(n).

Consider a Turing machine M which recognize a language L. Roughly
speaking, there exist two ways to consider the time complexity of M : the
average-case analysis where one consider the average number of steps M
needs to recognize an element x of L, and the worst-case analysis where one
consider the maximal number of steps M needs to recognize an element x
of L, that is, x is an input leading to the longest �nite computation of M .
Thus, the goal of the worst-case analysis is to determine an asymptotic upper
bound veri�ed for every input recognized by the machine. This thesis only
deals with worst-case analysis. Similarly, when we will speak about space
complexity, we will consider the worst-case analysis.

Example 2.1.4 Let f : N → N be the function describing the running time
of a Turing machine M , that is, f takes as its input the size of the input x
of M such that x leads to the longest �nite run of M . We denote by n the
size of x, i.e. we have n = |x|.

Assume that f(n) is de�ned as follow:

f(n) = 4n7 + 5n4 + 2n3 + n+ 2

Then, we have f(n) = O(n7). Indeed, taking the highest order term of
the polynomial without the constant coe�cient 4 is su�cient to obtain an
asymptotic upper bound. Thus, we say that M runs in O(n7). �

Class P is the class of problems which can be solve deterministically in
polynomial-time, i.e., there exists a deterministic Turing machine M where
the maximal number of needed steps to solve it is a polynomial on the input

16



2.1. COMPUTATIONAL COMPLEXITY

size n where nk is the highest term, for some �xed k. Such problems are
decidable in O(nk). Thus, if we denote by TIME(x) the class of problems
deterministically decidable in O(x), P can be de�ned as follow:

P =
⋃
k

TIME(nk)

Very similarly, the class NP is the class of problems which can be solved
non-deterministically in polynomial-time, i.e., there exists a non-determinis-
tic polynomial-time Turing machine solving the given problem.

Then, if we denote by NTIME(x) the class of problems non-deterministi-
cally decidable in O(x), we can de�ne the class NP from the same way we
have de�ned P:

NP =
⋃
k

NTIME(nk)

To give an intuition, the class NP is the class of problems which are
di�cult to answer, but for which it is easy to verify if a proposed answer is
a solution or not.

It is clear that, given a problem p, there exists a non-deterministic
polynomial-time Turing machine solving p if there exists a deterministic one.
Therefore we have P ⊆ NP. The question to know if NP ⊆ P is unknown
and considered to be one of the most di�cult problems in TCS1.

A very important notion is the completeness of a complexity class. We
often use this notion for the class NP, telling that a problem is NP-complete.
Intuitively, an NP-complete problem p is a problem considered to be among
the most di�cult problems in NP since one can reduce every problem in NP
to the problem p. More formally, a problem p is NP-complete if p ∈ NP and
for every problem p′ ∈ NP we have p′ ≤p p.

As least, we de�ne the class L which is the class of problem where needed
space to compute a problem for a deterministic Turing machine is within log n
with n being the input size. Denoting by SPACE(x) the class of problems
deterministically decidable in spaceO(x), the class L can be de�ned as follow:

L = SPACE(log n)

There exists a lot of computational classes in complexity theory, however
all along this thesis we will only used these three classes, especially classes
P and NP.

1The Clay Mathematics Institute had chosen in 2000 seven problems, that they called
millennium problems, considered to be the most di�cult open problems in Mathema-
tics, which are: the Birch and Swinnerton-Dyer conjecture, the Hodge conjecture, the
Navier-Stokes conjecture, the Poincaré conjecture (solved by Grisha Perelman in 2006),
the Riemann hypothesis, the Yang-Mills theory and the P versus NP problem.

17



CHAPTER 2. PRELIMINARIES

2.2 Constraint Satisfaction Problem

Constraint Satisfaction Problems (or csp for short) constitute a common
formalism to describe many algorithmic problems from combinatorics and
graph theory, arti�cial intelligence, computational molecular biology, etc.
csp notion appears for the �rst time in 1974 in Montanari's article [Mon74],
and is now present in many areas of computer science: csps have attracted
a lot of attention, in particular in combinatorics, arti�cial intelligence, and
�nite model theory; we refer to the recent monograph with survey articles
on this subject [CKV08].

Before introducing what is a csp instance, we need the notion of con-
straint. A k-ary constraint is a function taking k variables in input and
outputs either "true" of "false" when we assign a value to each variable. In
logic, a constraint is named a predicate.

A csp instance can be seen as a �rst-order formula de�ned inductively
in the following way:

(1) true and false, respectively denoted by > and ⊥, are formulas;

(2) a constraint C(x1, . . . , xk) is a formula;

(3) if ϕ1 and ϕ2 are formulas, then ϕ1 ∧ ϕ2 is a formula;

(4) �nally if ϕ is a formula containing a free variable x then ∃xϕ is a formula.

Notice that in the literature, �rst-order formulas allowing conjunctions
and existential quanti�cation only are called primitive positive formulas.

We consider a csp problem on a �xed domain D. The valuation of vari-
ables is a function I named interpretation such that we have I : V → D, with
V the set of variables. Thus, the formula ϕ(x1, . . . , xk) is satis�able if there
exists an interpretation I such that for each xj ∈ {x1, . . . , xk}, replacing xj

by I(xj) in ϕ give us a true sentence. We say that I is a valid interpretation
for ϕ and write I(x1), . . . , I(xk) |= ϕ(x1, . . . , xk).

Thus, we can formally de�ne the Constraint Satisfaction Problem as
follow:

Problem: csp
Input: A formula ϕ(~x).
Question: Is the formula ϕ(~x) satis�able?

csps are well-known to be NP-complete in general. However, one can
�nd some sub-problems which are tractable, that is, in P. These "islands
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of tractability" appear when we restrict the type of allowed constraints to
build a csp instance. It should be noticed that such islands of tractability
also appear with some structural restrictions, like for instance when we force
a structure on the domain: this leads among others to the Dichotomy Theo-
rems of Schaefer on Boolean domains and Bulatov on ternary domains. The
restriction of allowed constraints leads us to the parametric version of csps.
Before formally de�ning parametric csps, we need to introduce the notion
of relation.

A n-ary relation R on domain D is a subset of Dn. One can built a
constraint R(x1, . . . , xn) built upon the relation R, such that R is the set of
valid interpretations for R(x1, . . . , xn) (see Example 2.2.1). A tuple t of an
n-ary relation R is then an element of Dn. We denote the i-th coordinate,
or position, in t by t[i].

Example 2.2.1 On the Boolean domain D = {0, 1}.
Take for example these three relations:

• R1 = {(0, 0); (1, 1)}

• R2 = {(0, 1); (1, 0)}

• R3 = {0, 1}3 r {(0, 0, 0); (1, 1, 1)}

Respectively, the corresponding constraints are the following:

• = (x, y), usually written "x = y",

• 6= (x, y), usually written "x 6= y",

• and nae(x, y, z) which correspond to the ternary constraint "not-all-
equal".

Moreover, let the tuple t ∈ R2 such that t = (1, 0). We have then t[0] = 1
and t[1] = 0. �

Thus, the parametric version of csp is the problem to decide if there
exists a valid interpretation for a given csp instance built over a set S of
relations, that is, where solutions of constraints correspond to a relation in S.
We say that S is a template and we denote by csp(S) the parametric version
of csp over S.

Problem: csp(S)
Input: A formula ϕ(~x) built over relations in S.
Question: Is the formula ϕ(~x) satis�able?
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Example 2.2.2 Let D be the domain {0, 1, 2, 3}, and let S be the set of
relations {=, 6=,≤}. Then, we can have for example the following instance
of csp(S):

ϕ(a, b, c, d) := (a = c) ∧ (a 6= b) ∧ (a ≤ d) ∧ (b ≤ d) ∧ (c 6= b)

An example of valid interpretation I for ϕ(a, b) can be I(a) = 1, I(b) = 2,
I(c) = 1 and I(d) = 3. �

We call S-formula a formula where constraints are built upon relations
in S.

From now on, we will focus exclusively on the study of parametric csp(S)
problems, denoted as csp for short in the following. Our goal is, given a
framework, to detect which templates imply tractability and to prove, if
possible, that all other templates imply intractability.

2.3 Universal algebra

One powerful way to study complexity of csp goes through algebraic meth-
ods. Links between complexity of csp and universal algebra are very well pre-
sented in many papers such as in [BCRV03] and [BCRV04], and in [JCP98],
[BKJ00] and [BJK05]. Advantages of using universal algebra for our study
are multiple: among others, it gives us a uni�ed framework based on a rich
algebraic theory to characterize sets of structures and classes of problems,
links each e�cient algorithm to a structural property such as the closure
under certain polymorphisms and allow us to give hardness proof without
reduction.

Let's denote the arity of a function f by ar f and the arity of a relation
R by arR.

First, we introduce a notion for functions, which constitute fundamental
mathematical objects in this thesis. Let f be a function of arity k on a �xed
size domain D such that we have f : Dk → D. The range of f , denoted by
ran f , is the set {f(x) | x ∈ D}. We write f(A) for a subset A ⊆ D to
denote the set {f(a) | a ∈ A}.

Let R be an n-ary relation on a domain D. We say that a k-ary function
f : Dk → D is a polymorphism of R if f applied component-wise to k tuples
in R outputs a tuple in R. Formally, let R be a n-ary relation and let
t1, . . . , tk be k tuples in R. Let f be a k-ary function such that, applied
component-wise to tuples t1, . . . , tk, it outputs a tuple t.
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t1 t2 . . . tk t
q q q q

f( a1
1 a2

1 . . . ak
1 ) = a1

f( a1
2 a2

2 . . . ak
2 ) = a2

...
...

...
...

f( a1
n a2

n . . . ak
n ) = an

If, for every k tuples t1, . . . , tk in R, f outputs a tuple t which belongs
to R, then we say that f is a polymorphism of R. In this thesis, we will
often write f(t1, . . . , tk) as a shortcut to express the fact that we apply
f component-wise to tuples t1, . . . , tk. Reciprocally, we say that R is an
invariant of f . By extension, we say that p is a polymorphism of a set S
of relations if p is a polymorphism of each relation R in S. Reciprocally, we
say that R is an invariant of a set F of functions if R is an invariant of each
functions f in F . All along this thesis, we will say that a set S of relations
is closed under a function f if f is a polymorphism of S.

The study of constraint satisfaction problems often uses the notion of
clones and co-clones. A clone, or a functional clone, is a set of functions
containing the identity and closed under composition. The smallest clone
containing the functions F is denoted by [F ]. Similarly, a co-clone, or a rela-
tional clone, is a set of relations containing the equality eq = {(d, d) | d ∈ D}
and closed under conjunction, variable identi�cation and existential quan-
ti�cation. The smallest co-clone containing the set of relations S is denoted
by 〈S〉.

We introduce now the Galois connection, which is constantly used to
characterize complexity of csp. Let X,Y be two arbitrary sets, and let
m1 : X → Y and m2 : Y → X be two mappings such that we have:

• For all x, y ∈ X such that x ≤ y, m1(y) ≤ m1(x) holds,

• For all x, y ∈ Y such that x ≤ y, m2(y) ≤ m2(x) holds,

• For all x ∈ X and y ∈ Y , x ≤ m2(m1(x)) and y ≤ m1(m2(y)) hold.

We say that m1 and m2 present a Galois connection between the ordered
structures (X,≤) and (Y,≤).

Now; consider a function f . We denote by Inv f the set of invariants by
f . Thus, observe that Inv f is a set of relation. For F a set of functions, we
write InvF the set of invariants by each function in F such that InvF =⋂

f∈F Inv f . Similarly, given a relation R, we denote by PolR the set of
polymorphisms of R. Then, PolR is a set of functions. For a set S of
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relations, we denote by PolS the set of polymorphisms of every relation
in S. Thus, we have PolS =

⋂
R∈S PolR. It is well-known in universal

algebra that for every set S of relations and set F of functions, sets PolS
and InvF form respectively a clone and a co-clone. Moreover, Pol and Inv
present the good properties to form a Galois connection: consider F and S
respectively the set of sets of functions and the set of sets of relations over
a domain D. Thus, Pol : S → F and Inv : F → S form a Galois connection
between structures (F ,⊆) and (S,⊆). This implies that, the bigger the set
S is, the smaller PolS is, and vice versa. Thus, if a set S is closed under a
polymorphism p, then every subset S′ of S is also closed under p. In addition,
following [Gei68] and [BKKR69] we have for every F and S the equations
[F ] = Pol InvF and 〈S〉 = Inv PolS.

For a �xed �nite domain D of cardinality n, the set of clones and the
set of co-clones ordered by inclusion, respectively (F ,⊆) and (S,⊆), form
two lattices. On a Boolean domain, the lattice of clones is called Post lattice
since Emil Post described in his paper [Pos41] the full (in�nite) list of Boolean
clones and their inclusions. The reader can �nd a modern study of Post's
results in [Lau06]. We can now explain how the universal algebra helps to
determine the complexity of csp.

The link between universal algebra and complexity of csp is due to Jeav-
ons et al. in the 90's (see [JC95], [JCG97], [Jea98], [JCP98] and [JCG99]).
It is possible to determine the complexity of csp(S) via algebraic properties
thanks to the following propositions:

Proposition 2.3.1 Let S1 and S2 be two �nite sets of relations such that the
inclusion S1 ⊆ 〈S2〉 holds. Then we have the reduction csp(S1) ≤p csp(S2).

This proposition allows us to conclude that, if csp(S2) is in P then every
�nite subset S1 of 〈S2〉 gives a parameter which implies the polynomiality
of csp(S1). On the opposite, if there exists a �nite subset S1 of 〈S2〉 such
that csp(S1) is NP-complete then we can conclude that csp(S2) is also NP-
complete. From this proposition, we have the following corollary.

Corollary 2.3.2 Let S1 and S2 be two �nite sets of relations such that
〈S1〉 = 〈S2〉 holds. Then we have csp(S1) ≡p csp(S2), that is, csp(S1)
and csp(S2) are equivalent.

Thus, this corollary allows us to focus on co-clones to study the complex-
ity of csp, since this complexity does not depend on a set of relations, but
on the co-clone it generates.
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Thanks to the Galois connection between clones and co-clones, we have
the following proposition and corollary which allow us to work not on co-
clones, but on clones to describe the complexity of csp.

Proposition 2.3.3 Let S1 and S2 be two �nite sets of relations such that
the inclusion PolS2 ⊆ PolS1 holds. Then we have the reduction csp(S1) ≤p

csp(S2).

Remark that the direction of the inclusion is PolS2 ⊆ PolS1. This is
easily comprehensive since, due to the Galois connection, the bigger a set S
of relations is, the smaller its set of polymorphisms PolS is.

Corollary 2.3.4 Let S1 and S2 be two �nite sets of relations such that
PolS1 = PolS2 holds. Then we have csp(S1) ≡p csp(S2).

The clone lattice is then helpful in the sense that, if we know the inclusion
structure between clones and if we know the complexity of csp(S) for a given
S, we can conclude that:

• if csp(S) is in P then, for each �nite set S′ of relations such that the
clone PolS′ contains PolS, we have csp(S′) in P,

• and if csp(S) is NP-complete then, for each �nite set S′ of relations
such that the clone PolS′ is included in PolS, we have csp(S′) NP-
complete.
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I ask the reader to remem-

ber that what is most obvious

may be most worthy of ana-

lysis. Fertile vistas may open

out when commonplace facts

are examined from a fresh point

of view.

Lancelot Whyte (1896�1972)

3
Monotone csp

The starting idea of this thesis was to study several aspects of csp problems
which avoid the uncountable clone lattice problem. Hence, the very �rst
idea was to enrich the csp formalism with the disjunction, that is, in addi-
tion of the conjunction, we allow the disjunction between constraints. This
gives us problems named Monotone csps, or mcsp for short. Considering
the problem mcsp(S) over a template S on a �nite domain D, we known by
Pöschel [Pös80] and [Pös04] and Krasner [Kra38] that such an extension im-
plies the fact that every polymorphism of S is an endomorphism, that is, an
unary function, allowing us to conclude that the clone lattice is now count-
able, and even �nite, for every �nite domain. csps with disjunction have
been also considered from a di�erent viewpoint using disjunctive constraints
by Cohen, Jeavons, Jonsson and Koubarakis in [CJJK00], where disjunctive
constraints have the form of the disjunction of two constraints.

Even if the study of the lattice revealed itself to be too complicated,
our study of mcsp problems leads us to two Dichotomy Theorems. The
�rst one is a Dichotomy Theorem for every �nite domain cardinality shown
in Section 3.1 and published in [HR09]. The second one is a Dichotomy
Theorem for countable in�nite domains, shown in Section 3.2 and published
in [BHR09], which can be seen from two di�erent points of view. Indeed,
these instances of mcsp on a template S are both NP-hard and complete un-
der polynomial-time many-one reduction for the class of reducible problems
to csp(S) under a non-deterministic polynomial-time many-one reduction.

The dichotomy theorem for �nite domain cannot really be considered
as something new since the result was implicitly known by the complexity
part of the csp community. Indeed, proof of this dichotomy has been made
independently in [HR09] and in [Mar06]. However, from this study come
up some new ideas around the kernel width notion which may be helpful to
fully characterize the complexity of some csp problems, or to give a su�cient
property implying NP-completeness of csp problems (see Conjecture 5.3.6)
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3.1 Finite case

In this section, we study the complexity of parametric Monotone Constraint
Satisfaction Problems mcsp(S) where mcsp is a generalization of csp de-
�ned as follows: constraints are built upon relations in S, and we connect
constraints each others by a conjunction or a disjunction. We present a di-
chotomy with simple conditions for the algorithmic problem mcsp(S) with
S being a set of relations over a �nite domain D.

A formula is de�ned inductively in the following way:

(1) true and false, respectively denoted by > and ⊥, are formulas;

(2) a constraint C(x1, . . . , xk) built upon a k-ary relation R in S is a formula;

(3) if ϕ1 and ϕ2 are formulas, then ϕ1 ∨ ϕ2 and ϕ1 ∧ ϕ2 are formulas;

(4) �nally if ϕ is a formula containing a free variable x then ∃xϕ is a formula.

Notice that in this chapter, an S-formula will be a formula obtain as
above and where constraints are built upon relations in S.

Remark 3.1.1 We do not consider negation in our formulas because it
brings us to an obvious generalization of the problem csp(S). Indeed, Pöschel
shows in his survey [Pös04] that, for the extension of csp allowing logical
connectors {∨, ∧, ∃, 6=} and for every set S of relations consider as the
template of this extended problem, PolS is a set of functions containing per-
mutations only (Theorem 2.3 in [Pös04] combined with results in [Pös80]).
Thus, this generalization leads to NP-complete cases over every �nite domain
of cardinality greater than or equal to three, for every template S.

We describe what is an interpretation in our context. Let S be a set of
relations upon which we build our constraints. An interpretation I : V → D
satis�es the constraint C(x1, . . . , xk) built upon R ∈ S, denoted by I �
C(x1, . . . , xk), if (I(x1), . . . , I(xk)) ∈ R. It is extended to formulas in the
following way:

(a) I � C1(~x) ∨ C2(~y) if I � C1(~x) or I � C2(~y),

(b) I � C1(~x) ∧ C2(~y) if I � C1(~x) and I � C2(~y).

We note that for all formulas ϕ, we have > � ϕ and ⊥ 2 ϕ. Thanks to
the previous de�nition an of interpretation, now we can formally de�ne the
Monotone Constraint Satisfaction Problem.
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Problem: mcsp(S)
Input: A formula ϕ(~x) built upon relations in S.
Question: Is the formula ϕ(~x) satis�able?

Our study of Monotone Constraint Satisfaction Problems is made easier
by the existence of a Galois connection among clones and co-clones. Pöschel
showed in [Pös04] that applying disjunction on constraints implies that re-
lations satisfying an instance of a mcsp problem are invariant under unary
functions only. Polymorphisms of these relations are thus endomorphisms
and we denote them by End instead of Pol. Let us denote respectively by
S and F the sets of sets of relations and functions. Pöschel [Pös04] spec-
i�es that the mappings End: S → F and Inv : F → S present a Galois
connection between the ordered structures (S,⊆) and (F ,⊆). Moreover, for
all sets of relations S and functions F , the identities Inv EndS = 〈S〉 and
End InvF = [F ] hold. Pöschel points out that the sets 〈S〉 and [F ] are
respectively a weak Krasner algebra and an endomorphisms monoid ; how-
ever in this chapter, we will continue to name these structures co-clone and
clone, respectively. In this scope we can consider the monotone constraint
satisfaction problems as csp de�ned upon weak Krasner algebras. The exis-
tence of the aforementioned Galois connection allows us to easily decide the
complexity of monotone constraint satisfaction problems. The complexity
analysis is based on the following result.

Proposition 3.1.2 Let S1 and S2 be two �nite non-empty sets of relations
over the domain D, such that eq ∈ S1 with eq the equality relation. The
inclusion EndS1 ⊆ EndS2 implies mcsp(S2) ≤p mcsp(S1).

Proof: From EndS1 ⊆ EndS2 follows 〈S1〉 = Inv EndS1 ⊇ Inv EndS2 =
〈S2〉. Thus, every relation in 〈S2〉 can be obtained from relations in S1,
that is, every S2-formula can be expressed by a S1-formula. Since every co-
clone (equivalent to a weak Krasner algebra) contains the equality relation eq
and is closed under conjunction, disjunction, existential quanti�cation and
identi�cation of variables, we immediately derive reductions

mcsp(S2) ≤p mcsp(S2 ∪ {eq}) ≤p mcsp(S1 ∪ {eq})

Since eq ∈ S1, we have mcsp(S1 ∪ {eq}) = mcsp(S1) and the result follows.
2

According to Proposition 3.1.2, a complexity result proved for a set of
relations S immediately extends to all relations in the co-clone 〈S〉, provided
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that S contains the equality relation eq. Therefore from now on we always
assume that the equality relation eq is included in every set S. Moreover,
the presence of the quaternary relation

J = {(x, y, z, w) ∈ D4 | (x = y) ∨ (z = w)}

in the template S of a classical constraint satisfaction problem csp(S) trans-
forms it to a monotone constraint satisfaction problem mcsp(S), that is if
J ∈ S then csp(S) ≡p mcsp(S). We prove this through the next proposi-
tion.

Notice however that we can get rid of the equality relation in S, as
describe in Section 3.2.

Proposition 3.1.3 Let S be a set of relations on the domain D and consider
the relation J = {(x, y, z, w) ∈ D4 | (x = y) ∨ (z = w)}. If J ∈ S then
PolS = EndS.

Proof: Suppose that there exists a binary function g ∈ PolS depending on
both arguments, i.e., there exist values a0, a1, a2, b0, b1, b2 ∈ D such that
a0 6= a1, b1 6= b2, g(a0, a2) 6= g(a1, a2) and g(b0, b1) 6= g(b0, b2). Clearly,
the vectors j1 = (a0, a1, b0, b0) and j2 = (a2, a2, b1, b2) belong to J , but the
vector (g(a0, a2), g(a1, a2), g(b0, b1), g(b0, b2)) is absent from J . Therefore
the function g cannot be a polymorphism of a set of relations containing J .
From any function f of arity ar(f) > 2 we can always produce a binary
function by variable identi�cation. 2

From the description of the Galois connections between weak Krasner
algebras and endomorphisms monoids given above, it follows that a set S
of relations where we have PolS = EndS leads to a co-clone 〈S〉 closed
under conjunction, disjunction, existential quanti�cation and identi�cation
of variables. Thus we deduce for this result and Proposition 3.1.3 that
csp(S) ≡p mcsp(S) holds if we have J ∈ S.

Since the number of endomorphisms over a �nite domain is always �nite,
we are ensured to obtain a �nite complexity characterization for mcsp.

We will exhibit a dichotomy of mcsp(S) complexity characterized by a
simple criterion. It is easier to prove this dichotomy for mcsp(f(S)) where f
is a permutation keeping invariant the set S. We need the following proposi-
tion adapted from Jeavons [Jea98] showing that the problems mcsp(S) and
mcsp(f(S)) are logspace-equivalent.
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Proposition 3.1.4 (Jeavons [Jea98]) Let S be a set of relations on D
and f be an unary function on D. Let f(S) = {f(R) | R ∈ S}. If each
relation R ∈ S is closed under f then mcsp(f(S)) is logspace-equivalent to
mcsp(S).

Proof: Suppose that each relation R ∈ S is closed under f . Let ϕ(~x) be
an instance of mcsp(f(S)). We have a formula ϕ(~x) where constraints
C(x1, . . . , xk) are constructed upon relations R ∈ f(S). According to the hy-
pothesis, all relations R ∈ S are closed under f , i.e. the inclusion f(R) ⊆ R
holds for all R ∈ S. We deduce that ϕ(~x) is also an instance of mcsp(S).

Take a formula ϕ(~x) being an instance of mcsp(S). It can be transformed
by a logspace reduction to an instance ϕ′(~x) of mcsp(f(S)) by replacing each
constraint constructed upon a relation R by a constraint constructed upon
f(R). Moreover, because R is closed under f , we have f(R) ⊆ R and we
derive that all solutions of ϕ′(~x) are also solutions of ϕ(~x). Conversely, if
h is a solution of ϕ(~x) then f(h) is a solution of ϕ′(~x). Thus we have a
logspace-equivalence among mcsp(f(S)) and mcsp(S). 2

We will study monotone constraint satisfaction problemsmcsp(S) through
sets of functions F satisfying InvF = S. The following propositions prove
that mcsp(S) is polynomial if [F ] contains a constant function, and it is
NP-complete otherwise.

Proposition 3.1.5 Let F be a set of unary functions such that EndS = [F ]
for a set of relations S. If [F ] contains a constant function then mcsp(S) is
polynomial.

Proof: If the endomorphisms of S contain a constant function fd(x) = d for
all x ∈ D, then for the set of relations 〈S〉 invariant under [F ], each relation
R ∈ 〈S〉 contains a d-vector, i.e. a mapping of each variable to the value d.
Therefore each instance of mcsp(S) is satis�able by a d-vector. 2

Lemma 3.1.6 Let S be a set of relations and F be a set of unary functions
such that EndS = [F ] does not contain any constant functions. Let f ∈ [F ]
be a function with the smallest cardinality of ran f . Then End f(S) contains
only permutations.

Proof: Suppose there is a function g ∈ End f(S) not being a permutation.
Necessarily g is not injective, i.e. the inclusion ran g ( ran f holds. This
is a contradiction with the fact that the cardinality of ran f is the smallest
among all functions in [F ]. 2
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Actually, if f ∈ EndS such that ran f is one of the smallest cardinality
among functions in EndS ("one" of the smallest because one can have several
di�erent smallest ranges), f(S) is called the core of S, and Lemma 3.1.6 is an
already well-known result. However, we do not use a lot the notion of core
in this chapter, that is why we do not introduce it here but in Chapter 4,
where it reveals to be a fundamental notion.

Proposition 3.1.7 Let F be a set of unary functions such that the clone
[F ], equivalent to EndS for a set of relations S, does not contain constant
functions. Then mcsp(S) is NP-complete.

Proof: We adapt the proof of Proposition 5.6 from [Jea98]. Let [F ] be with-
out constant functions. Let f ∈ [F ] be a function with minimal cardinality
of its range ran f . By Lemma 3.1.6, we know that End f(S) contains only
permutations. Since [F ] does not contain constant functions, we also know
that cardinality of ran f satis�es the condition |ran f | ≥ 2. We have to
separate two cases.

If |ran f | = 2, then we assume without loss of generality that ran f =
{0, 1}. The set End f(S) contains only permutations on {0, 1}. Let Rnae

be the relation {0, 1}3 r {(0, 0, 0); (1, 1, 1)}. It is clear that relation Rnae

is closed under every permutations on {0, 1}. Hence we have the inclusion
End f(S) ⊆ EndRnae. The relation Rnae gives rise to the not-all-equal-
3sat problem, known to be NP-complete. Indeed, it is well-known that
csp(S) is NP-complete if Rnae ∈ S (see [BCRV04] for instance). Since every
instance of csp(S) is obviously also an instance of mcsp(S), we deduce
that mcsp(S) is also NP-complete. By Proposition 3.1.2 we conclude that
mcsp(f(S)) is NP-complete.

Let now |ran f | ≥ 3. The set of relations Inv End(f(S)) is closed under
permutations on ran f . In particular, it contains the relation Q ⊆ D2 where
Q = {a1, a2, . . . , ak}2 r {(a1, a1); (a2, a2); . . . ; (ak, ak)}, such that we have
ran f = {a1, a2, . . . , ak}. The relation Q corresponds to valid valuations
for all instances of the |ran f |-coloring problem. This problem is known to
be NP-complete since |ran f | ≥ 3. We conclude that mcsp(f(S)) is also
NP-complete in this case.

We have seen in Proposition 3.1.4 that the problem mcsp(f(S)) is log-
space-equivalent to mcsp(S). Since we have one relation in Inv End(f(S))
leading to a NP-complete problem, we conclude thatmcsp(S) is NP-complete.

2

From Propositions 3.1.5 and 3.1.7 we derive the main theorem of this
section.
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Theorem 3.1.8 The monotone constraint satisfaction problem mcsp(S) is
polynomial if the set EndS contains a constant function. Otherwise, it is
NP-complete.

We have presented a very simple dichotomy criterion for the problemmcsp(S)
on a �nite domain D. To decide this condition, it is su�cient to check if the
endomorphisms set EndS, which must be �nite, contains a constant func-
tion. The endomorphism set EndS is always equal to the clone [F ] for some
set of functions F .

3.2 In�nite case

In this section we study the computational complexity of mcsp(S) over
countable in�nite domains.

The class of constraint satisfaction problems over in�nite domains is a
rich class of problems; it can be shown that for every computational problem
p there exists a set S of relations over a countable in�nite domain such
that csp(S) is equivalent to the problem p under polynomial-time Turing
reductions [BG08].

In this section, we show that the complexity classi�cation for problems
mcsp(S) over countable in�nite domains can be reduced to the complexity
classi�cation for constraint satisfaction problems csp(S).

As we showed in Section 3.1 for a �nite domain D, the polynomial-time
solvable cases of mcsp(S) are precisely those relational structures S where
all relations in S contain the tuple (a, . . . , a) composed only from the element
a ∈ D; in this case, mcsp(S) is called a-valid. Interestingly, this is no longer
true for in�nite domains.

Consider a countable in�nite domain D and the relation R6= on D such
that R6= := D2 r {(d, d) | d ∈ D}. R6= is clearly not a-valid. However,
mcsp({R6=}) can be reduced to the Boolean formula evaluation problem
(which is known to be in the complexity class L) as follows: let Φ be an
instance of mcsp(S). Constraints in Φ of the form x 6= y with two di�erent
variables x and y are replaced by true, and constraints of the form x 6= x are
replaced by false. The resulting Boolean formula is equivalent to true if and
only if Φ is satis�able.

The mcsp(S) problem over a �nite or in�nite domain can also be view
as a model-checking problem of the existential positive �rst-order logic. A
universal-algebraic study of the model-checking problem for �nite structures
S and various other syntactic restrictions of �rst-order logic (for instance
positive �rst-order logic) can be found in [Mar08].
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3.2.1 Result

We write L ≤m L′ if there exists a deterministic polynomial-time many-one
reduction from L to L′.

De�nition 3.2.1 (from [LLS75]) A problem A is non-deterministic poly-
nomial-time many-one reducible to a problem B (A ≤NP B) if there is a
non-deterministic polynomial-time Turing machine M such that x ∈ A if
and only if there exists y ∈ B computed by M on input x. We denote by
ANP the smallest class that contains A and is closed under ≤NP.

Observe that ≤NP is transitive [LLS75]. To state the complexity classi-
�cation for mcsp(S), we need the following concepts. First, we de�ne the
notion of unsatis�able constraint.

De�nition 3.2.2 A constraint C(x1, . . . , xk) built upon a relation R is un-
satis�able if, for every interpretation I of the variables x1, . . . , xk, we have
(I(x1), . . . , I(xk)) /∈ R.

Example 3.2.3 Let R be the relation such that R = D2 r {(a, a) | a ∈ D}.
Then the constraint C(x, x) built upon R is unsatis�able. �

Let Φ be an instance of mcsp(S). We construct a Boolean formula FS(Φ)
as follows. We �rst remove all existential quanti�ers from Φ. Then we replace
each unsatis�able constraint in Φ of the form C(x1, . . . , xk) built upon the
k-ary empty relation by false. All other constraints in Φ will be replaced by
true. We write FS(Φ) for the resulting Boolean formula. Note that if Φ is
satis�able then FS(Φ) must be logically equivalent to true.

De�nition 3.2.4 We call a set S of relations locally refutable if the fol-
lowing holds: every instance Φ of mcsp(S) is satis�able if and only if the
Boolean formula FS(Φ) (as described above) is logically equivalent to true.

In Section 3.2.2, we will show the following result.

Theorem 3.2.5 Let S be a set of relations on a countable in�nite domain.
If S is locally refutable then the problem mcsp(S) is in the complexity class L.
Otherwise, mcsp(S) is complete for the class csp(S)NP under polynomial-
time many-one reductions.
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In particular, mcsp(S) is in P or is NP-hard (under deterministic polyno-
mial-time many-one reductions). If S is a set of relations over a �nite domain,
then mcsp(S) is in P or NP-complete, because �nite domain constraint sat-
isfaction problems are clearly in NP. The observation that mcsp(S) is in
P or NP-complete has previously been seen in Section 3.1. However, our
proof remains the same for �nite domains and is simpler than the proof of
the previous section.

3.2.2 Proof

Before we prove Theorem 3.2.5, we start with the following simpler result.

Theorem 3.2.6 Let S be a set of relations on a countable in�nite domain. If
S is locally refutable, then the problem mcsp(S) is in L. Otherwise, mcsp(S)
is NP-hard (under polynomial-time many-one reductions).

To show Theorem 3.2.6, we �rst prove the following lemma.

Lemma 3.2.7 Let S be a set of relations on a countable in�nite domain.
If S is not locally refutable, then there are S-formulas ψ0 and ψ1 with the
property that

• ψ0 and ψ1 are both satis�able;

• ψ0 ∧ ψ1 is not satis�able.

Proof: Because S is not locally refutable, there is an unsatis�able instance Φ
of mcsp(S) such that the Boolean formula FS(Φ) described above is logically
equivalent to true. Among all formulas with this property, let Φ be the one
that is of minimal length.

If Φ is of the form Φ1∨Φ2 then both Φ1 and Φ2 must be unsatis�able, and
one of the Boolean formulas FS(Φ1) or FS(Φ2) must be true; this contradicts
the assumption that Φ is minimal.

If Φ is of the form Φ1∧Φ2, then both FS(Φ1) and FS(Φ2) must be true. If
both Φ1 and Φ2 are satis�able, then we are done, because we have found two
satis�able S-formulas such that their conjunction is unsatis�able. If Φ1 or
Φ2 is unsatis�able, say Φi is unsatis�able for i ∈ {1, 2}, then this contradicts
the assumption that Φ is minimal, because Φi is smaller than Φ, unsatis�able
and FS(Φi) is true. If Φ is of the form ∃x.Φ′ then this contradicts obviously
the assumption that Φ is minimal. Note that Φ cannot be reduced to a single
constraint, because in this case Φ is either unsatis�able or FS(Φ) is true (but
not both). 2
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Proof of Theorem 3.2.6: If S is locally refutable, then mcsp(S) can be
reduced to the positive Boolean formula evaluation problem, which is known
to be in L. We only have to construct from an instance Φ of mcsp(S) a
Boolean formula F := FS(Φ) as described before De�nition 3.2.4. Clearly,
this construction can be performed with logarithmic workspace. We evaluate
F , and reject if F is false, and accept otherwise.

If S is not locally refutable, we show NP-hardness of mcsp(S) by reduc-
tion from 3-SAT. Let I be a 3-SAT instance. We construct an instance Φ
of mcsp(S) as follows. Let ψ0 and ψ1 be the S-formulas from Lemma 3.2.7
and assume they are d-ary. Let v1, . . . , vn be the Boolean variables in I. For
each vi we introduce d new variables ~xi = x1

i , . . . , x
d
i . Let Φ be the instance

of mcsp(S) that contains the following conjuncts:

• For each 1 ≤ i ≤ n, the formula ψ0(~xi) ∨ ψ1(~xi)

• For each clause l1∨ l2∨ l3 in I, the formula ψi1(~xj1)∨ψi2(~xj2)∨ψi3(~xj3)
where ip = 0 if lp equals ¬xjp and ip = 1 if lp equals xjp , for all
p ∈ {1, 2, 3}.

It is clear that Φ can be computed in deterministic polynomial time from I,
and that Φ is satis�able if and only if I is satis�able. 2

Note that, applied to �nite domain, we obtain again the dichotomy
from [HR09] and [Mar06], that is, mcsp(S) is in P if S is a-valid for an
element a ∈ D and NP-complete otherwise. We prove in the following
proposition that, over a �nite domain, S is locally refutable if and only
if it is a-valid for an element a of the domain D.

Proposition 3.2.8 Let D be a �nite domain and S be a set of relations over
D. S is locally refutable if and only if it is a-valid for some element a ∈ D.

Proof: Let S be a-valid for an element a ∈ D. Then S is obviously locally
refutable. Indeed, each relation Ri in S is a-valid, thus FS(Ci(~x)) must be
true, with Ci(~x) being the constraint built upon Ri, hence we have FS(Φ)
true for every formula Φ we can build from S.

Let S be locally refutable and assume that it is not a-valid for any a ∈ D.
We split the proof into two parts.

Assume �rst that there exist two relations R1 and R2 in S, R1 be-
ing a1-valid and R2 being a2-valid, such that for all elements a in D we
have (a, a, . . . , a) /∈ R1 ∩ R2. Clearly, the two elements a1 and a2 from D
must satisfy the condition a1 6= a2. Let Ci(x, x, . . . , x) be a constraint built
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upon the relation Ri, for i = 1, 2. Since each formula Ci(x, x, . . . , x) is ai-
valid, it is therefore locally refutable. However, the formula C1(x, x, . . . , x)∧
C2(x, x, . . . , x) cannot be locally refutable, since it is not a-valid for any
a ∈ D, leading to a contradiction.

Assume now that there exists a relation R in S, which is not a-valid for
any a ∈ D, i.e. such that for all elements a ∈ D we have (a, a, . . . , a) /∈ R. Let
C(x1, . . . , xk) be a constraint built upon the k-ary relation R. Consider D
to be a domain of cardinality n, i.e. |D| = n. Let x1, . . . , xkn be k.d distinct
variables, and let's construct the formula ϕ such that ϕ is the conjunction of
the constraint C over all combinations of k variables between {x1, . . . , xkd}.
By the pigeonhole principle, for each interpretation of ϕ, we must have at
least k variables interpreted to the same value in D. Thus, the constraint
C over these k variables must be false. This is a contradiction with the
hypothesis that S is locally refutable.

We conclude that a set of relations S is locally refutable if and only if it
is a-valid for some element a ∈ D.

2

Proof of Theorem 3.2.5: If S is locally refutable then the statement has been
shown in Theorem 3.2.6. Suppose that S is not locally refutable. To show
that mcsp(S) is contained in csp(S)NP, we construct a non-deterministic
Turing machine T which takes as input an instance Φ of mcsp(S), and
which outputs an instance T (Φ) of csp(S) as follows.

On input Φ the machine T proceeds recursively as follows:

• if Φ is of the form ∃x.ϕ then return ∃x.T (ϕ);

• if Φ is of the form ϕ1 ∧ ϕ2 then return T (ϕ1) ∧ T (ϕ2);

• if Φ is of the form ϕ1 ∨ ϕ2 then non-deterministically return either
T (ϕ1) or T (ϕ2);

• if Φ is of the form C(x1, . . . , xk) then return C(x1, . . . , xk).

The output of T is an instance of csp(S). It is clear that T has polyno-
mial running time, and that Φ is satis�able if and only if there exists a
computation of T on Φ that computes a satis�able instance of csp(S).

We now show that mcsp(S) is hard for csp(S)NP under ≤m-reductions.
Let L be a problem with a non-deterministic polynomial-time many-one
reduction to csp(S), and let M be the non-deterministic Turing machine
that computes the reduction. We have to construct a deterministic Turing
machine M ′ that computes for any input string s in polynomial time in |s|
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an instance Φ of mcsp(S) such that Φ is satis�able if and only if there exists
a computation of M on s that computes a satis�able instance of csp(S).

Say that the running time ofM on s is in O(|s|e) for a constant e. Hence,
there are constants s0 and c such that for |s| > s0 the running time of M
and hence also the number of constraints in the input instance of csp(S)
produced by the reduction is bounded by t := c |s|e. The non-deterministic
computation ofM can be viewed as a deterministic computation with access
to non-deterministic advice bits as shown in [GJ79]. We also know that for
|s| > s0, the machine M can access at most t non-deterministic bits. If w
is a su�ciently long bit-string, we write Mw for the deterministic Turing
machine obtained from M by using the bits in w as the non-deterministic
bits, and Mw(s) for the instance of csp(S) computed by Mw on input s.

If |s| ≤ s0, thenM ′ returns ∃x.(x = x) if there is an w ∈ {0, 1}∗ such that
Mw(s) is a satis�able instance of csp(S), and M ′ returns ∃~x.ψ0(~x) ∧ ψ1(~x)
otherwise (i.e., it returns a false instance of mcsp(S); ψ0 and ψ1 are de�ned
in Lemma 3.2.7). Since s0 is a �xed �nite value, M ′ can perform these
computations in constant time.

It is convenient to assume that S has just a single relation R. Indeed,
remark we can always �nd a csp which is deterministic polynomial-time
equivalent and where the template is of the following form: if S corresponds
to {R1, . . . , Rn} where Ri has arity ri and is not empty, then csp(S) is
equivalent to csp({R1 × · · · × Rn}) where R1 × · · · × Rn is the

∑n
i=1 ri-

ary relation de�ned as the Cartesian product of the relations R1, . . . , Rn.
Similarly, mcsp(S) is equivalent to mcsp({R1×· · ·×Rn}). Let l be the arity
of R. Then instances of csp(S) with variables x1, . . . , xn can be encoded
as sequences of numbers that are represented by binary strings of length
dlog te as follows: The i-th number m in this sequence indicates that the
(((i−1) mod l) + 1)-st variable in the (((i−1)div l) + 1)-st constraint is xm.

For |s| > s0, the sentence Φ computed by M ′ has the form

∃x1
1, . . . , x

t
l . (

t∧
i=1

C(xi
1, . . . , x

i
l) ∧Ψ) .

�� ��3.1

where C(xi
1, . . . , x

i
l) is the constraint built upon R and Ψ is an S-formula

de�ned below.
The idea is that any instance of csp(S) computed by the machine M

can be obtained by contracting variables in
∧

i≤tC(xi
1, . . . , x

i
l). The way

this is done is controlled by a Boolean formula that can be computed from
the input s of M in polynomial time. The Boolean formula also contains
Boolean variables for the non-deterministic advice bits of M . Each Boolean
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variable v in the formula is simulated by a d-tuple ~xv of variables in Ψ that
is forced to satisfy ψ0(~xv)∨ψ1(~xv) (ψ0 and ψ1 are de�ned in Lemma 3.2.7),
similarly as in the proof of Theorem 3.2.6, such that v = 0 corresponds to
the unsatis�ability of ψ0(~xv), and v = 1 corresponds to the satis�ability of
ψ1(~xv). The formula Φ will be such that there exists a computation of M
that produces a satis�able instance I of csp(S) if and only if there exists an
assignment to x1

1, . . . , x
t
l that satis�es Ψ and such that

∧
i≤tC(xi

1, . . . , x
i
l) is

equivalent to I.
We now provide the details of the de�nition of the machine M ′ that

computes Φ. We use a construction from the proof of Cook's theorem given
in [GJ79]. In this proof, a computation of a non-deterministic Turing ma-
chine T accepting a language L is encoded by Boolean variables that repre-
sent the state and the position of the read-write head of T at time r, and
the content of the tape at position j at time r. The tape content at time
0 consists of the input x, written at positions 1 through n, and the non-
deterministic advice bit string w, written at positions −1 through − |w|.
The proof in [GJ79] speci�es a deterministic polynomial-time computable
transformation fL that computes for a given string s a SAT instance fL(s)
such that there is an accepting computation of T on s if and only if there is
a satisfying truth assignment for fL(s).

In our case, the machine M computes a reduction and thus computes
an output string. Recall our binary representation of instances of the csp:
M writes on the output tape a sequence of numbers represented by binary
strings of length dlog te. It is straightforward to modify the transformation
fL given in the proof of Theorem 2.1 in [GJ79] to obtain for all positive
integers a, a′, b, b′, c, c′ where a, a′ ≤ t, b, b′ ≤ l, c, c′ ≤ dlog te a deterministic
polynomial-time transformation ga,a′,b,b′,c,c′ that computes for a given string
s a SAT instance ga,a′,b,b′,c,c′(s) with distinguished variables z1, . . . , zt (for
the non-deterministic bits in the computation of M) such that the following
are equivalent:

• ga,a′,b,b′,c,c′(s) has a satisfying assignment where zi is set to wi ∈ {0, 1}
for 1 ≤ i ≤ t;

• the c-th bit in the b-th variable of the a-th constraint in Mw(s) equals
the c′-th bit in the b′-th variable of the a′-th constraint in Mw(s).

We use the transformations ga,a′,b,b′,c,c′ to de�ne M ′ as follows. The
machine M ′ �rst computes the formulas ga,a′,b,b′,c,c′(s). For every Boolean
variable v in these formulas we introduce a new conjunct ϕ0(xv) ∨ ϕ1(xv)
where xv is a d-tuple of fresh variables. Then, every positive literal l = xj
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in the original conjuncts of the formula is replaced by ϕ1(xj), and every
negative literal l = ¬xj by ϕ0(xj). We then existentially quantify over
all variables except for xz1 , . . . , xzt . Let ψa,a′,b,b′,c,c′(s) denote the resulting
existential positive formula. It is clear that the formula

∃xz1 , . . . , xzt .
∧

a,a′,b,b′

(∧
c,c′

ψa,a′,b,b′,c,c′
)
→ xa

b = xa′
b′


can be re-written in existential positive form Ψ without blow-up (we can
replace implications α → β by ¬α ∨ β, and then move the negation to the
atomic level, where we can remove it by exchanging the role of ϕ0 and ϕ1),
and hence Ψ can be computed by M ′ in polynomial time. The formula Ψ
indeed has the properties required for the formula Ψ mentioned in Equa-
tion 3.1. 2

3.3 Conclusion

In this chapter, we have present result obtained for Monotone Constraint
Satisfaction Problems. The original idea was to enrich the formalism of csp
with the disjunction in order to allow a countable and even �nite clone lat-
tice. The lattice reveals itself to be in de�nitive not exploitable. However, we
obtained a Dichotomy Theorem for the complexity of the parametric mono-
tone csp problem over every �nite domains. We also proved a Dichotomy
Theorem for Monotone csp over countable in�nite domains.
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4
co-Boolean csp

This chapters and the next one deal with the complexity of csp where the
template is a set of graphs of unary functions. Consider f to be a unary
function. We call graph of f the relation de�ned as follows.

De�nition 4.0.1 The graph f• of a unary function f is the binary relation
where each tuple corresponds to the input and the output of f . Formally, we
have

f• = {(x, f(x)) | x ∈ D}

By extension, we denote by F • the set of graphs of functions in F , that
is F • = {f• | f ∈ F}. In this chapters and the next one, we will denote by
F -formula a formula where constraints are built upon F •.

This chapter deals with co-Boolean csp. A co-Boolean csp is a problem
csp(F •) where F is a set of unary functions with a co-domain of size at most
two. We have made the distinction between homogeneous co-Boolean csp

(Section 4.3) where all functions in F share the same co-domain, and the
general case (Section 4.4) where functions in F does not necessary share the
same co-domain.

As well as Chapter 3, the starting idea here was to avoid the uncountable
clone lattice problem, and as well as Chapter 3, we did not succeed to study
e�ciently the clone lattice of co-Boolean csps.

This clone lattice seemed however very convenient at the �rst look. Burris
and Willard proved in their paper [BW87] that there is a �nite number of
clones of polymorphisms over graphs of unary functions. Unfortunately,
even �nite, the clone lattice grows exponentially regarding to the domain
cardinality and is very hard to understand.

Nevertheless, it is possible to study the complexity of co-Boolean csp

problems without the help of the clone lattice. This chapter contains a Di-
chotomy Theorem for the homogeneous co-Boolean csp problem, and an �rst
approach for a Dichotomy Theorem for non-homogeneous co-Boolean csp
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verifying a property of non-duplication of the right hand side of relations. A
dichotomy Theorem for non-homogeneous co-Boolean csp in general remains
an open question, but we have the intuition that the dichotomy criterion is
the same as the homogeneous case.

It is important to stress that the study of co-Boolean csp is a �rst step for
the study of csp over unary functions, that is, csps where each constraint is
on the form f(x) = y with f an unary function. A fundamental result from
Feder, Madelaine and Stewart [FMS04] shows that for every template S,
there exists a set F of two unary functions such that problems csp(S) and
csp(F •) are polynomial-time equivalent, that is, csp over unary functions
are as powerful as general csp parametric problems. Graphs of unary func-
tions give us a very structural template which is really convenient to work
with.

4.1 De�nitions

When studying the complexity of csp(F •) for a set of unary functions F it is
convenient to represent F • in a normal form. We de�ne below the H-normal
form.

De�nition 4.1.1 The H-normal form of the graphs of a set of unary func-
tions F = {f1, . . . , fk} is the (k + 1)-ary relation FH which is the solution
of formula ϕ(x, y1, . . . , yk) expressed as follow:

ϕ(x, y1, . . . , yk) :=
∧

i∈{1,...,k}

fi(x) = yi

It is very convenient to present the relation FH as a matrix, where rows
are tuples in FH . Under this form, we intuitively see that the �rst column
describes every element of the domain D and each other column corresponds
to the description of a function in F . Speaking about FH we call the �rst
column the left hand side and the group of all other columns the right hand
side.

Example 4.1.2 Let F = {f1, f2}, with f1 and f2 two unary functions on D
de�ned as follow:

x f1(x) f2(x)
0 0 0
1 1 0
2 0 1
3 1 1
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Thus, we have

FH = {(0, 0, 0); (1, 1, 0); (2, 0, 1); (3, 1, 1)} =


0 0 0
1 1 0
2 0 1
3 1 1


and the right hand side of FH , denoted FH

rhs

FH
rhs =


0 0
1 0
0 1
1 1


�

Let F be a set of unary functions on a domain D, and p be a polymor-
phism of FH

rhs. Let's denote by Drhs ⊆ D the domain of FH
rhs, that is, the

set of elements present in FH
rhs. We say that p′ is an extension of p to FH if:

• p′ is a polymorphism of FH ,

• p and p′ have the same arity k, and for every k-vector ~x ∈ Dk
rhs, the

equation p′(~x) = p(~x) holds,

• p′ has the same properties as p. By property we mean the associativity,
the commutativity, the conservativity and the idempotency, or the fact
to be a constant operation, a majority operation, a minority operation,
a semilattice operation, a 2-semilattice operation, a semi-projection or
an essentially unary operation. For instance, if p is associative then
p′ is also associative; if p is a semi-projection then p′ is also a semi-
projection.

If such a function p′ exists, we say that p is extended to FH .
Another notion we will use all along this chapters and the next one is

the notion of core of a set of relations.

De�nition 4.1.3 The core of a set S of relations, denoted Sc, is the subset
of S such that every endomorphism on Sc is an automorphism.

Notice that if a set S is a core, every unary polymorphism f of S is
bijective, that is, f is a permutation on the domain D. Observe that to
compute a core of a set S, you must take f ∈ PolS to be one of the unary
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polymorphisms of S with the smallest range and apply it on each relation in
S. Thus, the set f(S) is a core of S.

Now, we de�ne some operations we will use very often in this chapter
and in Chapter 5.

De�nition 4.1.4 We say that a n-ary operation f is idempotent if the fol-
lowing holds:

∀d ∈ D, f(d, d, . . . , d) = d

De�nition 4.1.5 A binary operation f is commutative if we have:

∀a, b ∈ D, f(a, b) = f(b, a)

De�nition 4.1.6 A n-ary operation f is said to be conservative if we have
the following equation:

∀a1, a2, . . . , an ∈ D, f(a1, a2, . . . , an) ∈ {a1, a2, . . . , an}

From now on, we call bcc a binary commutative conservative operation.

De�nition 4.1.7 A binary operation f is associative if the following holds:

∀a, b, c ∈ D, f(a, f(b, c)) = f(f(a, b), c)

A binary associative commutative idempotent operation is called a semi-
lattice operation. Sometimes, this operation is also called an ACI operation
(ACI for Associative Commutative Idempotent).

De�nition 4.1.8 A 2-semilattice operation is a binary commutative idem-
potent operation s on a domain D such that we have s(a, s(a, b)) = s(a, b)
for all a, b ∈ D.

De�nition 4.1.9 A n-ary operation p on a domain D is a projection if
there exists an index i ∈ [1, n] such that p(a1, . . . , ai, . . . , an) = ai, for all
a1, ldots, an in D.

De�nition 4.1.10 A semi-projection s is a n-ary operation, with n ≥ 3,
such that s is not a projection and veri�es the following property:

∃i ∈ {1, . . . , n}, ∀a1, . . . , an ∈ D, s(a1, . . . , an) = ai if |{a1, . . . , an}| < n
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De�nition 4.1.11 An essentially unary operation e is a n-ary operation
such that there exists an unary operation f and an index i ∈ {1, . . . , n}
verifying

∀a1, . . . , an ∈ D, e(a1, . . . , an) = f(ai)

De�nition 4.1.12 A majority operation majo and a minority operation
mino are two ternary operations such that we have

∀a, b ∈ D, majo(a, a, b) = majo(a, b, a) = majo(b, a, a) = a

and
∀a, b ∈ D, mino(a, a, b) = mino(a, b, a) = mino(b, a, a) = b

On three di�erent values, a majority operation and a minority operation can
output any value in D.

De�nition 4.1.13 Consider a linear order, that is a total order, on the
domain D. A maximum operation max and a minimum operation min are
two binary operations such that we have

∀a, b ∈ D, if a < b then max(a, b) = b. Otherwise max(a, b) = a

and

∀a, b ∈ D, if a < b then min(a, b) = a. Otherwise min(a, b) = b

In order to have shorter notations, we will call majority a majority op-
eration, minority a minority operation, max a maximum operation and min
a minimum operation.

4.2 Generalities about sets of unary functions

In this section, we introduce some results which hold for every set F of unary
functions. First, let's introduce the following well-known and fundamental
result.

Theorem 4.2.1 Let S be a set of relations. If S is closed under a majority,
or a minority, or a max, or a min, or a semilattice operation then csp(S)
is in P. If S is closed under essentially unary operations only, then csp(S)
is NP-complete.

Proof: See for instance [JCG97], [Jea98] and [BCRV04]. 2
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4.2.1 Polynomial-time reductions and equivalences

This section presents very useful polynomial-time reductions and equiva-
lences between our studied problems.

Let F be a set of unary functions and let RelF denote the set of solutions
of every F -formula, that is, the set of solutions of every formula which can
be built upon F •.

Lemma 4.2.2 Let F and G be two sets of unary functions such that the
inclusion [F ] ⊆ [G] holds. Then, csp(F •) ≤p csp(G•).

Proof: Let F and G be two sets of unary functions such that [F ] ⊆ [G] holds.
Hence, every functions that can be built by compositions with functions from
F can also be built with functions from G. It means that every F -formula
is also a G-formula, so we have the inclusion RelF ⊆ RelG.

By [Her08], we know that RelF = Inv PolF •, for every set of functions F .
Then, we have the inclusion Inv PolF • ⊆ Inv PolG•. Since the application of
Pol reverses the inclusion, we have Pol Inv PolF • ⊇ Pol Inv PolG•. However
we know that for every set of relations S, the equation Inv PolS = 〈S〉 holds.
Then, we have the equation Pol Inv PolS = Pol〈S〉, that is, Pol Inv PolS =
PolS. Hence, we have the inclusion PolF • ⊇ PolG•.

By [Jea98] (Cor. 4.11), we immediately conclude that csp(F •) ≤p

csp(G•) 2

Proposition 4.2.3 Let F be a set of unary functions. Problems csp(F •)
and csp(FH) are polynomial-time equivalent.

Proof: By de�nition FH ∈ 〈F •〉. To recover f•i from FH , existentially
quantify all columns of FH except for the �rst and the i + 1'th columns.
Hence, it is clear that 〈FH〉 = 〈F •〉 and the result follows. 2

Lemma 4.2.4 Let F be a set of unary functions. If csp(FH
rhs) is NP-

complete then csp(FH) is NP-complete.

Proof: This is obvious: by de�nition, we have FH
rhs ∈ 〈FH〉, thus the in-

clusion PolFH ⊆ PolFH
rhs holds. Then, following [Jea98], we know that

csp(FH
rhs) ≤p csp(FH) holds. We conclude immediately. 2

4.2.2 Cores

The result obtained in this section is the following: to classify the complexity
of csp(F •) for any �nite set F of unary functions, it is enough to classify the
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complexity of csp(F •) for �nite sets of unary functions containing all unary
constant functions.

Given a graph of a unary function f• on a domain D and another
unary function π : D → D, we denote by π(f•) the relation {(π(di), π(dj)) |
(di, dj) ∈ f•}. Similarly, given the graphs of a set F of unary functions we
denote by π(F •) the set of relations {π(f•) | f• ∈ F •}. Let F •c denote the
core of F •. We begin by proving that, given a set F of unary functions, the
core of the graphs of the functions in F is the graphs of a set G of unary
functions, i.e., we have G• = F •c . In other words, the core of the graphs of
unary functions remains a set of graphs of unary functions.

Lemma 4.2.5 Given a set F of unary functions, then there exists a set G
of unary functions such that we have F •c = G•. In other words, the core of a
set of graphs of unary functions remains a set of graphs of unary functions.

Proof: The proof is quite direct: assume F • is not a core (otherwise we are
done). Taking p ∈ PolF • such that p has one of the smallest range among
polymorphisms of PolF •, we obtain p(F •) a core of F •, that is, we have
F •c = p(F •). Thus, we must have F •c ⊆ F •, which allows us to conclude.

2

Let ConD denote the set of all unary constant functions over a domainD.

Lemma 4.2.6 For every set F of unary functions on a domain D there
is a set G of unary functions on domain Dc ⊆ D such that csp(F •) is
polynomial-time equivalent to csp(G• ∪Con•Dc

). More speci�cally, G can be
chosen such that G• is the core of F • and Dc the domain of elements in the
core of F •.

Proof: The proof is direct thanks to Theorems 4.4 and 4.7 from [BJK05].
Theorem 4.4 shows that csp(F •) and csp(F •c ) are polynomial-time equiv-
alent, and Theorem 4.7 shows that, in particular, problems csp(F •c ) and
csp(F •c ∪ Con•Dc

) are also polynomial-time equivalent.
2

Notice this important fact: if F is a set of co-Boolean functions and there
exists d ∈ D such that for every function f ∈ F we have f(d) = d, then the
domain of the core of F collapse to become the singleton {d}. Thus, it is
clear that this case is not interesting to study since it leads immediately to
the tractability of csp(F •). This case is in fact veri�ed if F • is closed under
a constant operation, a well-known case implying obviously the tractability.
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Thus, in the Sections 4.3 and 4.4, we will consider that F • is not closed under
a constant operation, and then the core of F • will not be simply reduced to a
d-vector on a unary domain. This is also considered is the following remark.

Remark 4.2.7 Let F be a set of unary functions on a domain D such that
F contains at least two di�erent constant functions f1 and f2 on D, such
that f1 always outputs a and f2 always outputs b, with a, b ∈ D, a 6= b. Then
FH

rhs cannot be closed under any unary constant functions on D. Indeed, FH
rhs

contains two columns c1 and c2 corresponding to f1 and f2 which are only
composed of a and b, respectively. However, to be closed under a constant
function, FH

rhs needs to contain a d-tuple, that is a tuple (d, d, . . . , d). This is
impossible since each tuple in FH

rhs contains a and b respectively at the c1-th
and c2-th positions.

4.3 Homogeneous case

In this section we assume F is a set of homogeneous co-Boolean functions,
i.e., all functions in F are unary functions and share the same co-domain of
size two, say {0, 1}, if they are not constant functions. We recall that we
consider F • not to be closed under a constant operation since it is a trivial
case of tractability. Thus, if we consider F • to be a core on a domain D, this
domain cannot be the trivial unary domain. Thanks to Lemma 4.2.6, we can
assume that F • is a core containing the graph of every constant function on
D.

Lemma 4.3.1 Let F be a set of homogeneous co-Boolean functions such that
F • is a core containing the graphs of every unary constant function on the
domain D. If the right hand side FH

rhs of F
H , viewed as a relation, is neither

closed under majority, nor minority, nor max, nor min, then csp(F •) is
NP-complete.

Proof: Let ϕ(x, ~y) be the formula for which FH described the set of solu-
tions. Recall that FH

rhs is just the solutions of ∃xϕ(x, ~y). Since F • is a core
containing the graphs of every unary constant function on the domain D,
FH

rhs cannot be closed under any unary constant functions (see Remark 4.2.7).
Now, if FH

rhs is neither closed under majority, minority, max, nor min, then by
Schaefer's result in [Sch78], csp(FH

rhs) is NP-complete. We conclude thanks
to Lemma 4.2.4 and Proposition 4.2.3. 2

So the cases which have to be analyzed are when FH
rhs is closed under

majority, minority, max, or min.
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Lemma 4.3.2 Let F be a set of homogeneous co-Boolean functions. If FH
rhs

is closed under a majority or a minority, then csp(F •) is in P.

Proof: We only give the proof for majority since the minority case is com-
pletely analogous. Let FH

rhs be of arity k, and be closed under a majority
maj, that is, for every tuples t1, t2, t3 ∈ FH

rhs, maj(t1, t2, t3) outputs a tuple
t4 ∈ FH

rhs. Recall that maj applied on a, b, c ∈ D pairwise di�erent can
output everything, even an element d again di�erent from a, b and c.

Let's t′1, t
′
2 and t′3 corresponds to elements in the �rst column in FH

respectively at the same rows as t1, t2 and t3, as shown in the following
scheme where a bar separates the �rst column to FH

rhs.

FH =



...
...

t′1 tuple t1
...

...
t′2 tuple t2
...

...
t′3 tuple t3
...

...


Thus, there exists a majority maj′ such that for all elements a, b, c in a

same column of FH
rhs, we have maj′(a, b, c) = maj(a, b, c), and for t′1, t

′
2, t
′
3

we have maj′(t′1, t
′
2, t
′
3) = t′4 with t′4 the element in the �rst column of FH

at the same row as t4. So, FH is closed under maj′.
If FH is closed under a majority or a minority we know by Theorem 4.2.1

that csp(FH) is in P. By Lemma 4.2.4 and Proposition 4.2.3, we conclude
that csp(F •) is in P. 2

The remaining cases are when FH
rhs is closed under max or min. First, we

would like to de�ne to what corresponds the point-wise order on two tuples.
Let a, b two k-tuples on a binary domain. We have a ≤l b with ≤l the point-
wise order if for all i ∈ [0, (k− 1)] we have a[i] ≤ b[i]. In other words, a ≤l b
holds if there is no i ∈ [0, (k − 1)] such that a[i] = 1 and b[i] = 0.

Lemma 4.3.3 Let F be a set of homogeneous co-Boolean functions. If FH
rhs

is closed under max or min and the �rst two tuples (0, a) and (1, b) of FH

satisfy a ≤l b where ≤l is the point-wise order, then csp(F •) is in P.

Proof: The proof is similar to the proof of Lemma 4.3.2, i.e., we extend
the operation on FH

rhs toward F
H , outputting the convenient element in the

47



CHAPTER 4. CO-BOOLEAN CSP

�rst column. It gives us a max or min on a certain linear order on D (not
necessary the canonical order).

By Theorem 4.2.1, we also known that FH closed under max or min
implies that csp(FH) is in P. By Lemma 4.2.4 and Proposition 4.2.3, we
have csp(F •) is in P. 2

Finally we prove that other cases are NP-complete.

Lemma 4.3.4 Let F be a set of homogeneous co-Boolean functions. If FH
rhs

is closed under max or min but neither closed under majority nor minority,
and there is no point-wise order ≤l satisfying a ≤l b for the �rst two tuples
(0, a) and (1, b), then csp(F •) is NP-complete.

Proof: Note that FH
rhs is not closed under both min and max since this would

imply the closure of FH
rhs under a majority. Note also that if we do not have

a ≤l b then there must exist a column in FH
rhs representing a function fi such

that it contains 1 and 0 respectively at the �rst and second row. Thus, if
we project FH on the �rst and the (i+ 1)-th column ((i+ 1)-th because the
�rst column is column zero), we obtain a binary relation containing the two
tuples (0, 1) and (1, 0). This relation is actually the graph of fi, so it cannot
contain neither the tuple (0, 0) nor the tuple (1, 1). Then, this relation is
neither closed under max nor min. FH

rhs is by assumption neither closed under
majority nor minority. Hence, let F ′ be the set F ′ = {FH

rhs, f
•
i }. It is clear

that we have F ′ ⊆ 〈FH〉. Moreover, by Schaefer's theorem we know that
csp(F ′) is NP-complete, then we deduce by Theorem 4.2.1, Lemma 4.2.4
and Proposition 4.2.3 that csp(FH), and so csp(F •), are also NP-complete.

2

Theorem 4.3.5 Let F be a set of homogeneous co-Boolean functions. If F •

is closed under a constant operation then csp(F •) is obviously in P. If not,
the problem csp(F •) is in P if FH

rhs is closed under a majority operation, or
a minority operation, or either a max or min operation such that the �rst
two tuples (0, a) and (1, b) of FH satisfy a ≤l b where ≤l is the point-wise
order. Otherwise, csp(F •) is NP-complete.

Proof: The proof is direct by Lemmata 4.3.1, 4.3.2, 4.3.3 and 4.3.4. 2

4.4 General case

We consider in this part the problem csp(F •) where F is a set of non-
homogeneous co-Boolean functions, that is, where functions in F do not
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necessary share the same co-domain. Remember that we consider F • not to
be closed under a constant operation since it is a trivial case of tractability.
Thus, if we consider F • to be a core on a domain D, this domain cannot
be the trivial unary domain. Before calling these function "co-Boolean func-
tions", we denoted them "partition functions" since each function acts like a
partitioning of the domain D. However, the denomination "partition func-
tions" is already used by Bulatov and Grohe for a completely di�erent notion
(see [BG05]).

Nevertheless, a set of co-Boolean functions over D can be seen as a way
to consider several partitions of D, like it is shown in Example 4.4.1. Thus,
when studying di�erent partitions of D at the same time, one can consider
useless to have two elements a and b in D such that for every partitioning
induced by a co-Boolean function in F , a and b are in the same partition.
If we have this case, one could consider that a and b are similar elements
in D. This case appears if, there are two elements a and b in D such that
for every function f in F , the equation f(a) = f(b) holds. To have a better
representation, this is veri�ed when two rows are identical in FH

rhs; in the
sequel, we will say that these rows are duplicated.

Example 4.4.1 Let the domain D = {0, 1, 2, 3}, and f and g two co-
Boolean functions de�ned as follow:

x f(x) g(x)
0 0 3
1 1 3
2 0 1
3 1 3

Then one can considered that f and g make a partition of D: function f
splits D into a 0- and a 1-part, respectively {x | f(x) = 0} = {0, 2}
and {x | f(x) = 1} = {1, 3}, and g into a 1- and a 3-part, respectively
{x | g(x) = 1} = {2} and {x | g(x) = 3} = {0, 1, 3}. �

The study of such structure with no duplicated rows is not without in-
terest since it represents the set of di�erent partitions of D such that there
are no similar elements each time in the same partition. Thus, we focus in
this part of the study of the complexity of csp(F •) such that there is no
duplicated rows in FH

rhs.
So far however, we did not achieve to prove the following conjecture,

whatever the problem csp(F •) is such that there is some duplicated rows in
FH

rhs or not.
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Conjecture 4.4.2 Let F be a set of co-Boolean functions. If F • is closed
under a constant operation then this obviously leads to the tractability of
csp(F •). If not, the problem csp(F •) is in P if FH

rhs is closed under a
binary idempotent operation which is not a projection or under a majority
or minority operation. Otherwise it is NP-complete.

We can also present this conjecture in the same way as the "tractable
algebras conjecture" (Conjecture 7.5 in [BJK05]), that is, our problem is
NP-complete if PolF • contains essentially unary operations only, otherwise
it is polynomial.

To give the beginning of a proof of this conjecture, we will use the Rosen-
berg's list (Rosenberg's paper [Ros86] is di�cult to �nd, but this list is pre-
sented in [Jea98] for instance).

Theorem 4.4.3 (Rosenberg's list, [Ros86]) Let S be an arbitrary set of
relations on a �nite domain D. At least one of these conditions must hold:

• PolS contains a constant operation,

• PolS contains a binary idempotent operation which is not a projection,

• PolS contains a majority,

• PolS contains a minority,

• PolS contains a semi-projection,

• or else PolS is composed of essentially unary operations only.

Thus, we will follow step by step this list and start to show what are the
possible polymorphisms of FH

rhs.
First, observe that we can easily lighten this list by getting rid of con-

stant operations. Consider a set F of co-Boolean functions. We know by
Lemma 4.2.6 that adding every constant function over D in F does not
change the complexity of our problem csp(F •). However, for a set F con-
taining at least two constant operations, the relation FH

rhs cannot be closed
under any constant operation (see Remark 4.2.7).

From now on, we consider that a set F of functions will always contain
every possible constant function on the considered domain D. However in
order to keep a light notation, we will omit to explicitly write columns of
FH which represent constant functions in F .
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Proposition 4.4.4 Let F be a set of co-Boolean functions such that FH
rhs is

closed under a majority (respectively a minority). Then FH is also closed
under a majority (respectively a minority).

Proof: Let FH
rhs be closed under a majoritym. It is easy to see that FH is also

closed under m since the �rst column in FH is composed of every element of
the domain D and are present in this column exactly once. Take any three
rows r1, r2 and r3 in FH

rhs, and assume that m applied component-wise on
these three rows outputs the row r4. Now, extend m on rows (a, r1), (b, r2)
and (c, r3) in FH corresponding to our three previous rows, and assume that
m applied on it outputs (d, r4). Since a, b, c are pairwise di�erent, m(a, b, c)
can output any elements in D. Then, we choose m(a, b, c) = d.

The proof remains the same for minority. 2

Proposition 4.4.5 Let F be a set of co-Boolean functions. If there exists
a binary idempotent commutative polymorphism of FH

rhs, then there exists a
binary commutative conservative (bcc) polymorphism of FH

rhs.

Proof: Let F be a set of co-Boolean functions and q be a binary idempotent
commutative operation such that q ∈ PolFH

rhs. Observe that for every func-
tion f in F , with ran f = {a, b}, we must have q(a, a) = a and q(b, b) = b
since q is idempotent and q(a, b) = q(b, a) ∈ {a, b} since q is a polymorphism
of FH

rhs. Then, let q′ be the bcc operation de�ned as follow: for all f ∈ F ,
we have q′(xf , yf ) = q(xf , yf ) with xf , yf ∈ ran f , and q′(x, y) ∈ {x, y} for
all sets {x, y} which are not the range of a function f in F . We can see that
q′ is a polymorphism of FH

rhs. 2

The previous proposition shows we have a bcc in PolFH
rhs when we know

that there is a binary idempotent commutative operation in PolFH
rhs. This

allow us to focus on bcc operation from now. The next proposition proves
that a bcc polymorphism of FH

rhs is actually a 2-semilattice operation.

Proposition 4.4.6 Let F be a set of co-Boolean functions. Every bcc which
is a polymorphism of FH

rhs must be a 2-semilattice operation.

Proof: Remember that a 2-semilattice operation is a binary commutative
idempotent operation s on the domain D such that we have s(a, s(a, b)) =
s(a, b) for all a, b ∈ D.

Let q be a bcc. Assume we have q(a, b) = a for some a, b ∈ D. Thus, we
have q(a, q(a, b)) = q(a, a) = a = q(a, b). Assume now that q(a, b) = b holds
for some a, b ∈ D. We have q(a, q(a, b)) = q(a, b). Since q is commutative,
we conclude that q is a 2-semilattice operation. 2
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In the sequel, we will often use the notion of a domain ordered regarding
to a 2-semilattice operation.

De�nition 4.4.7 Let a, b be two elements of a domain D and s be a 2-
semilattice operation on D. We write a ≤s b if we have s(a, b) = b. Notice
that, since s is commutative, we have also s(b, a) = b. We say that the
domain D is ordered regarding to a 2-semilattice operation s by considering
the order ≤s, linear or partial, over elements of D. We also say that ≤s is
the order on D induced by s.

Example 4.4.8 Let D be the domain D = {0, 1, 2, 3} and s1, s2 be two 2-
semilattice operations on D de�ned as follow:

s1 0 1 2 3
0 0 1 0 1
1 1 1 1 1
2 0 1 2 1
3 1 1 1 3

s2 0 1 2 3
0 0 0 0 3
1 0 1 1 3
2 0 1 2 3
3 3 3 3 3

Thus D is ordered regarding to s1 by the partial order (2 ≤s1 0 ≤s1 1; 3 ≤s1 1)
and ordered regarding to s2 by the linear order 2 ≤s2 1 ≤s2 0 ≤s2 3. �

Assume now that FH
rhs is not closed under a majority or a minority, but

is closed under a 2-semilattice operation which induces a linear or partial
order on domain D.

We make a di�erence between 2-semilattice operations inducing a linear
or partial order on domain D which verify the property of 2-semilattice
isomorphism (introduced in De�nition 4.4.11) and those which do not verify
it.

De�nition 4.4.9 We call functional semilattice of a 2-semilattice operation
s the semilattice of elements of the domain D regarding to the order induced
by s.

De�nition 4.4.10 Let FH be the H-normal form of a set F of co-Boolean
functions. We call relational semilattice of a 2-semilattice operation s on
FH

rhs the semilattice for which elements are tuples in FH
rhs ordered regarding

to a 2-semilattice operation s.

De�nition 4.4.11 Let FH be the H-normal form of a set F of co-Boolean
functions and s be a 2-semilattice operation. Let also h be an isomorphism
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between the functional semilattice FS of s and the relational semilattice RS
of s on FH

rhs. We say that h is a connecting isomorphism between FS and
RS if h is such that, for every d ∈ D, we have (d, h(d)) ∈ FH .

Then, we can study these functional and relational semilattices and de-
termine if there exist such a connecting isomorphism between them.

Example 4.4.12 Let F be the following set of co-Boolean functions on D =
{0, 1, 2, 3}:

x f g h

0 0 1 0
1 1 1 0
2 0 2 2
3 1 1 2

Let s1, s2 be two 2-semilattice operations on D de�ned as follow:

s1 0 1 2 3
0 0 1 0 1
1 1 1 1 1
2 0 1 2 1
3 1 1 1 3

s2 0 1 2 3
0 0 1 0 1
1 1 1 1 1
2 0 1 2 3
3 1 1 3 3

Thus, partial orders on D induce respectively by s1 and s2 are (2 < 0 < 1; 3 <
1) and (2 < 0, 3 < 1). Then, we have the following functional semilattices of
s1 and s2, respectively:

0

2

1

3

1

3

2

0

Now, if we apply component-wise s1 on each couple of tuples in FH
rhs, except

trivial couples (t, t) for t ∈ FH
rhs, we obtain

s1(010, 110) = 110
s1(010, 022) = 010
s1(010, 112) = 110
s1(110, 022) = 110
s1(110, 112) = 110
s1(022, 112) = 112

Observe that we obtain the same results by applying s2 instead of s1. We
have the following relational semilattice s1 (or s2) on F

H
rhs:
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010

110

112

022

It is easy to see that there exists a connecting isomorphism between this
relational semilattice and the functional semilattice of s2, but not with the
functional semilattice of s1. Actually, one can see there is even no isomor-
phisms between the relational semilattice above and the functional semilattice
of s1. �

Proposition 4.4.13 Let F be a set of co-Boolean functions. Let FH
rhs be

closed under a 2-semilattice operation s which induces a linear of partial order
on domain D. The operation s is also a polymorphism of FH if and only
if there exists a connecting isomorphism h between the functional semilattice
FS of s and the relational semilattice RS of s on FH

rhs.

Proof:
⇐ : RS describes which row c in FH

rhs is output when we apply s on rows
a and b. FS describes the same structure but with elements of the �rst
column in FH . Let's a′, b′, c′ be elements in D and a, b, c be tuples in FH

rhs.
Assume we have s(a, b) = c and s(a′, b′) = c′ with (a′, a), (b′, b) ∈ FH . If
there exists a connecting isomorphism h between FS and RS, then we must
have (c′, c) ∈ FH . Thus, s is a polymorphism of FH .

⇒ : Let s be a polymorphism of FH . First, assume there exist only iso-
morphisms between FS and RS which are not connecting. Let h be such
an isomorphism. Thus there must exists a′, b′, c′, d′ ∈ D and a, b, c, d ∈ FH

rhs,
all pairwise di�erent, with (a′, a), (b′, b), (c′, c), (d′, d) ∈ FH such that we
have s(a′, b′) = c′ and s(a, b) = d. So it is clear that we have the equation
s((a′, a), (b′, b)) = (c′, d). However, this is a contradiction with the fact that
FH is an H-normal form of a set F of co-Boolean functions since a di�erent
tuple starting by c′ already exists in FH .

Remark that the proof remains exactly the same if we consider that there
exist no isomorphisms between FS and RS.

Hence, we can extend s to FH , that is, if FH
rhs is closed under s and there

exists a connecting isomorphism between FS and RS, then FH is also closed
under s. 2

Proposition 4.4.14 Let F be a set of co-Boolean functions. A semi-projection
which is a polymorphism of FH

rhs cannot be extended to FH .
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Proof: We recall the assumption that FH
rhs does not contain any duplicated

rows. Let FH
rhs be closed under a semi-projection s. By de�nition, s should

have an arity greater than or equals to 3, and s(i, j, k) acts like a projection
if and only if |{i, j, k}| < 3, with i, j, k ∈ D. However, since FH

rhs is composed
by co-Boolean functions only, for each triple (i, j, k) in a column we must
verify the inequality |{i, j, k}| < 3. Then, s is always acting like a projection
on FH

rhs. Without loss of generality, assume we have s(i, j, k) = i when
|{i, j, k}| < 3 holds.

Try to extend s to FH . Take three tuples a, b and c in FH
rhs, and elements

a′, b′ and c′ pairwise di�erent in the �rst column of FH such that (a′, a), (b′, b)
and (c′, c) are tuples in FH . Since s(a, b, c) must output the �rst tuple a, to
extend s to FH we must have s(a′, b′, c′) = a′. However, remark that s is no
longer a semi-projection since it is now always acting like a projection. 2

It is now time to expose how results above help us to start a characteri-
zation of the complexity of co-Boolean csp. As always in this chapter, this
beginning of a dichotomy criteria does not consider the case where F • is
closed under a constant operation since it leads obviously to the tractability
of csp(F •).

Theorem 4.4.15 Let F be a set of co-Boolean functions. If the fact that
PolFH

rhs containing a binary idempotent non-commutative operation or a bi-
nary idempotent commutative operation which is not a 2-semilattice operation
implies the tractability of csp(FH), then Conjecture 4.4.2 holds.

Proof: We try to characterize the complexity of csp(F •) via some criteria
around FH

rhs only. Remember the Rosenberg's list (Theorem 4.4.3). Let's
analyze point by point this list.

Let F be a set of co-Boolean functions on a domain D such that the
matrix FH

rhs does not contain any duplicated rows. Following Rosenberg's
list, we know that PolFH

rhs must contain at least a constant operation, or a
majority, or a minority, or a semi-projection, or a binary idempotent oper-
ation which is not a projection, or else PolFH

rhs is composed of essentially
unary operations only.

However, since we consider that F contains each constant functions on D
(Lemma 4.2.6), we cannot have a constant operation in PolFH

rhs (remember
Remark 4.2.7).

If PolFH
rhs contains a majority or a minority, then by Proposition 4.4.4

we know that PolFH contains also the extension of this majority or minority.
We can conclude by Lemma 4.2.4 and Proposition 4.2.3 that csp(F •) is in
P.
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If PolFH
rhs contains a semi-projection, we know thanks to Proposition 4.4.14

that such a semi-projection cannot be extended to FH , that is, PolFH can-
not contain a semi-projection. Thus, we are allowed to not consider this case
since by the Rosenberg's list, PolFH

rhs must contain another operation which
is not a semi-projection.

If PolFH
rhs contains essentially unary operations only, then it is well-

known (see [JCG97] for instance) that csp(FH
rhs) is NP-complete. We deduce

then by Lemma 4.2.4 and Proposition 4.2.3 that csp(F •) is NP-complete.
Hence, the last case to consider is when PolFH

rhs contains a binary idem-
potent operation which is not a projection. We consider �rst that this oper-
ation is commutative. If it is, then by Proposition 4.4.5 there exists a binary
commutative conservative operation (bcc for short) which is a polymorphism
of FH

rhs. Moreover by Proposition 4.4.6, a bcc which is a polymorphism of
FH

rhs must be a 2-semilattice operation. Let's name this operation s. If s
veri�es the isomorphism property, that is, if there exists a connecting isomor-
phism between the functional semilattice of s and the relational semilattice
of s on FH

rhs, then by Proposition 4.4.13, there exists a way to extend s to
FH , that is, PolFH also contains a 2-semilattice operation. This allows
us to conclude that csp(F •) is in P, thanks to Lemma 4.2.4 and Proposi-
tion 4.2.3, and to [Bul06b] showing that a problem csp(S) is in P if the set S
of relations is closed under a 2-semilattice operation. If s does not verify the
isomorphism property, then Proposition 4.4.13 shows that there is no way
to extend s to FH . Thus, as well as the case for semi-projection, PolFH

rhs

must contains another kind of operation. Remark that this operation can
be for instance a binary idempotent commutative operation f which is not
a 2-semilattice operation.

Finally, if the fact that PolFH
rhs containing a binary idempotent non-

commutative operation or a binary idempotent commutative operation which
is not a 2-semilattice operation implies the tractability of csp(FH), then the
problem csp(F •) is in P if FH

rhs is closed under a binary idempotent operation
which is not a projection, or a majority operation, or a minority operation.
Otherwise, FH

rhs is closed under essentially unary operations only, and then
csp(F •) is NP-complete. 2

We may have found a polynomial-time algorithm solving csp(F •) if FH
rhs

is closed under a binary idempotent non-commutative operation, but unfor-
tunately this result is too recent to be written in this thesis since we are not
completely sure of it. Thus, notice that the closure under a binary idempo-
tent non-commutative operation only is the last unknown case forbidding us
to conclude this chapter by a Dichotomy Theorem.
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4.5 Conclusion

Results presented in this chapter are �rst steps toward the study of the com-
plexity of csp over unary functions. We have proved a Dichotomy Theorem
for the complexity of homogeneous co-Boolean csp for every �nite domain.
As announced in the introduction of the chapter, the co-Boolean csp prob-
lem is not de�nitely closed since we do not have a Dichotomy Theorem for
non-homogeneous co-Boolean csp with or without duplicated rows in FH

rhs.
Indeed, the case where the template is closed under a binary idempotent
non-commutative operation or a binary idempotent commutative operation
which is not a 2-semilattice operation only is not clear.
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When you don't know where a

road leads, it sure as hell will

take you there.

Leo Rosten (1908�1997) 5
csp(F •) and kernel width

This chapter contains the very last results of this thesis. Unfortunately, time
was running out to deepen the kernel width method presented here, how-
ever a �rst step has been made toward the comprehension of mechanisms of
kernel width, and this tool could be greatly useful to characterize the com-
plexity of some sub-problems of the csp problem over unary functions, and
by extension thanks to Feder, Madelaine and Stewart's result in [FMS04], to
sub-problems of the csp(S) problems.

Universal algebra often uses the concept of kernel. We de�ne this notion
with the help of equivalence classes. Let f : D → D be a unary function with
range ran f . A d-equivalence class, for d ∈ ran f and denoted by [d]f , is the
set of elements [d]f = {x ∈ D | f(x) = d}. The kernel ker f of a function
f is the set of all equivalence classes with cardinality strictly greater than 1
for all d ∈ ran f , i.e. ker f = {[d]f | d ∈ ran f and |[d]f | ≥ 2}.

Example 5.0.1 Let f , g and h be unary functions on the domain D =
{0, 1, 2, 3} such that

x f(x) g(x) h(x)
0 0 0 1
1 1 1 1
2 2 0 1
3 3 1 1

Then ker f = ∅, ker g = {{0, 2}; {1, 3}} and kerh = {{0, 1, 2, 3}}. �

From now on, in order to lighten notations we will write

ker f = {(a, b); (c, d, e)}

instead of ker f = {{a, b}; {c, d, e}}.
Notice we have only de�ned the notion of kernel for unary functions.

Indeed, this notion is quite natural for unary functions, but becomes imme-
diately complicated to extend this notion to k-ary functions. We have not
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developed so far a convenient way to exploit kernels of k-ary functions be-
cause of this di�culty, but also because we are not convinced by the bene�t
that such an extension could give us.

Let us introduce the notion of kernel width. We say that a kernel ker f
is a subset of a kernel ker g, denoted by ker f ⊆ ker g, if for all a ∈ ran f
there exists b ∈ ran g such that we have [a]f ⊆ [b]g, that is, every equivalence
class in ker f is a subset of an equivalence class of ker g. For instance, if we
take Example 5.0.1, we have the inclusions ker f ⊆ ker g and ker g ⊆ kerh
(and then ker f ⊆ kerh since the inclusion of kernels is transitive). Thus,
two kernels ker f and ker g are independent if ker f * ker g and ker g * ker f
hold.

From this notion of inclusion, we derive the notion of kernel width, or
width for short. Let F be a set of unary functions. We denote by widthF
the width of this set, such that widthF is the maximal anti-chain in the
set of non-empty kernels in [F ] ordered by the inclusion. In other words,
widthF is the maximal number of non-empty pairwise independent kernels
of functions in [F ]. We think that this notion of kernel width may have a
great importance for the characterization of the complexity of csp, in general
or at least for some sub-problems.

In this chapter, we �rst prove that a linear kernel width, that is a ker-
nel width equals to 1, implies the tractability of csp(F •), with F a set of
arbitrary unary functions over a �xed domain D. This result holds for ev-
ery cardinality of the domain D. Then, the next section contains the full
characterization of the complexity of csp(F •), where F is a set of arbitrary
unary functions over a ternary domain, with a Dichotomy Theorem using the
kernel width method. Finally, the last main result of this chapter deals with
the NP-completeness of the problem csp(F •) with F a set of homogeneous
co-Boolean functions over a �xed domain D if the inequality widthF ≥ |D|
holds. Notice that the �rst and the last results presented above were al-
ready known since they are covered respectively by the Bulatov's theorem
in [Bul06a] and Theorem 4.3.5 in Chapter 4. Actually, this �rst result of
this chapter (that is, the Dichotomy Theorem) has been already found by
Broniek and published [Bro05], but our proof is simpler than Broniek's one,
using known results in universal algebra, and leads us to a better compre-
hension of interactions between kernel width and complexity. Moreover, we
would like to stress that those results are respectively the �rst dichotomy
theorem and the �rst proof of NP-completeness over every cardinality of do-
main via the kernel width method. Besides, the result of tractability in the
second section was not known so far.
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5.1 width F = 1 implies tractability

5.1.1 Intermediary results

This section presents the following results. Let F be a set of unary functions
on a �xed size domain D such that widthF = 1 holds. We show that for all
f, g ∈ F , we have the implication ker f ◦g ⊆ ker f ⇒ ker f ◦g = ker f . First,
we show the following lemma.

Lemma 5.1.1 Let F be a set of unary functions over a �nite domain D,
and let f, g ∈ F . Then the following hold: ran(f ◦ g) ⊆ ran f and ker g ⊆
ker(f ◦ g).

Proof: Every unary function f ∈ F is monotone, i.e., if A ⊆ B then f(A) ⊆
f(B) holds for all subsets A,B of D. Since ran g ⊆ D and f is monotone, we
have f(ran g) ⊆ f(D). Moreover, f(ran g) is ran(f ◦ g) and f(D) is ran f .
Therefore the inclusion ran(f ◦ g) ⊆ ran f holds. Let x, y ∈ ker g. We have
g(x) = g(y), therefore (f ◦ g)(x) = (f ◦ g)(y), i.e. x, y ∈ ker(f ◦ g). 2

Proposition 5.1.2 Let F be a set of unary functions on a domain D. For
all f, g ∈ F , the implication ker f ◦ g ⊆ ker f ⇒ ker f ◦ g = ker f holds.

Proof: Let f and g be two functions in F such that ker f◦g ⊆ ker f . Then, for
all x, y ∈ D such that f ◦ g(x) = f ◦ g(y), we have the equation f(x) = f(y).

First, notice that f(x) 6= f(y)⇒ f ◦ g(x) 6= f ◦ g(y)⇒ g(x) 6= g(y) hold
for all x, y since we know that we have ker g ⊆ ker f ◦ g by Lemma 5.1.1.

Suppose that we have ker f◦g  ker f . Thus, let x1, y1 ∈ D, x1 6= y1, such
that the inequality (f ◦ g)(x1) 6= (f ◦ g)(y1) and the equation f(x1) = f(y1)
hold.

Let x2, y2 ∈ D be such that we have g(x1) = x2 and g(y1) = y2 .
Necessarily, we have x2 6= y2 because of the implication from Lemma 5.1.1
(f ◦ g)(x) 6= (f ◦ g)(y)⇒ g(x) 6= g(y). Then we have f(x2) 6= f(y2), and we
deduce from ker f ◦ g ⊆ ker f that the inequality f ◦ g(x2) 6= f ◦ g(y2) holds.
We can then de�ned x3 and y3 such that g(x2) = x3 and g(y2) = y3, and so
on. (i)

Notice that every xi, yi are obtained from the function g.
Necessarily, there exist n0 ∈ N and k ∈ N such that, for every n ≥ n0 we

have gk(xn) = xn and gk(yn) = yn, with xn and yn obtained as previously.
We have then gk−1(xn) = xn+k−1 and gk−1(yn) = yn+k−1.

Let j be the smallest number of iteration of g such that gj(x1) = xn0 and
gj(y1) = yn0 . Then the equations gj(x1) = gk′

(xn0) and gj(y1) = gk′
(yn0)
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hold, with k′ > j a multiple of k. Thus, we have obviously f ◦ gj(x1) =
f ◦ gk′

(xn0) and f ◦ gj(y1) = f ◦ gk′
(yn0). Since we have the inclusion

ker f ◦ g ⊆ ker f , we deduce the equations f ◦ gj−1(x1) = f ◦ gk′−1(xn0)
and f ◦ gj−1(y1) = f ◦ gk′−1(yn0). By de�nition, we have k′ > j. Then, by
iteration the equations f(x1) = f◦gk′−j(xn0) and f(y1) = f◦gk′−j(yn0) hold.
Let x′, y′ ∈ D be two values such that x′ = gk′−j(xn0) and y′ = gk′−j(yn0).
Notice that x′ and y′ are obtained through some iteration of g, and by our
notation we have in fact x′ = xn0+((k′−j)[k]) and y′ = yn0+((k′−j)[k]). By
hypothesis, we know that f(x1) = f(y1), then we can deduce the equation
f(x′) = f(y′) which is a contradiction with (i), since x′ and y′ are built
through the function g starting from x1 and y1. Thus we cannot have the
strict inclusion ker(f ◦ g)  ker f , so we conclude that ker(f ◦ g) = ker f
holds if ker(f ◦ g) is included in ker f . 2

We now introduce a notation speci�cally used in this chapter.

Notation 5.1.3 We write x1, . . . , xk B ker f if x1, . . . , xk are elements con-
tained in the same equivalence class of ker f . On the contrary, we denote by
x1, . . . , xk 7 ker f if there is at least two elements xi and xj among x1, . . . , xk

which do not belong to the same equivalence class of ker f .

We recall the Example 5.0.1 given in preliminaries.

Example 5.1.4 Let f , g and h be functions on the domain D = {0, 1, 2, 3}
such that

x f(x) g(x) h(x)
0 0 0 1
1 1 1 1
2 2 0 1
3 3 1 1

Then ker f = ∅, ker g = {(0, 2); (1, 3)} and kerh = {(0, 1, 2, 3)}. �

Thus, if we consider this example, we have 0, 2 B ker g, 1, 3 B ker g but
also 0, 1 7 ker g for instance.

Lemma 5.1.5 Let D be a domain of size n and F be a set of unary functions
on D such that widthF = 1. Let h be a function in [F ], then for every
x1, x2 ∈ D the following holds: we have h(x1) = y1 and h(x2) = y2, and
there exists a function f ∈ [F ] such that x1, x2 B ker f if and only if there
exists a function g ∈ [F ] such that y1, y2 B ker g.
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Proof:
⇐ : Let y1, y2 be such that y1, y2 B ker g, for a function g ∈ [F ]. Then
x1, x2 B ker g ◦ h holds.

⇒ : Let x1, x2 be such that x1, x2 B ker f , for a function f ∈ [F ]. Suppose
that y1, y2 7 ker g for every g ∈ [F ]. Then, we have the inequality g(y1) 6=
g(y2), that is equivalent to say g ◦ h(x1) 6= g ◦ h(x2). In particular, we have
f ◦ h(x1) 6= f ◦ h(x2). Since widthF = 1, we have either ker f ⊆ ker f ◦ h
or ker f ◦ h ⊆ ker f . In the �rst case we are done, because this implies the
contradiction f ◦ h(x1) = f ◦ h(x2). In the second case, we deduce from
Proposition 5.1.2 that ker(f ◦ h) = ker f and derive the same contradiction.
Then we conclude immediately. 2

5.1.2 Main result

Let D be a domain of size n and F be a set of unary functions on D such
that widthF = 1, that is, for every functions f and g in [F ], we have either
ker f ⊆ ker g or ker g ⊆ ker f . Thus, when we speak about smallest or
largest kernels, this is regarding to the linear order by inclusion. Moreover,
we call a non-trivial kernel a kernel which is neither the empty kernel nor
the kernel containing every elements in D in one equivalence class. More
formally, a kernel ker f is non-trivial if there exists d1, . . . , dk ∈ D such that
d1, . . . , dk B ker f and |d1, . . . , dk| < |D| hold. In this section, we will see
that widthF = 1 implies the fact that csp(F •) is in P.

Let M be the majority operation de�ned as follow: consider M(x, y, z),
with x, y and z pairwise di�erent. If there exists a function f ∈ [F ] such
that ker f is the smallest non-trivial kernel containing at least two elements
from {x, y, z} in the same equivalence class (for example, x, z B ker f),
then M(x, y, z) returns the �rst element in the input that belongs to ker f .
If this last property does not hold, we are in the situation where there is
no non-trivial kernels containing two elements from {x, y, z} in the same
equivalence class (that is, even the largest non-trivial kernel does not contain
two elements belonging to the same equivalence class). Then M(x, y, z)
returns the �rst element in the input; in this case M acts like a projection
on the �rst element of the input.

Example 5.1.6 Consider the following matrix composed of functions in a
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set F = {f, g, h, i}:

x f(x) g(x) h(x) i(x)
0 0 0 1 3
1 1 0 1 3
2 2 2 1 3
3 3 3 2 3
4 4 4 3 3

First, observe that, in this example, the closure [F ] does not create other
kernels than ker f , ker g, kerh and ker i.

The majority M(2, 1, 0) must output 1 since ker g is the smallest kernel
containing two elements among 0, 1 and 2 in the same equivalence class,
i.e. 0 and 1, and 1 is the �rst element in the input (2, 1, 0) among these two
elements.

Similarly, M(2, 3, 0) must output 2, with this time kerh the smallest ker-
nel verifying our property.

Last example, M(2, 3, 4) must output 2, since there is no non-trivial ker-
nels containing at least two elements among 2, 3 and 4 in the same equiva-
lence class. �

Theorem 5.1.7 Let F be a set of unary functions on a domain D such that
widthF = 1. Then every relation in F • is invariant by the previous majority
operation M .

Proof: For each relation R in F •, we apply the majority operation M on
three tuples (x1, y1), (x2, y2) and (x3, y3) ∈ R, and we will proof that the
tuple (M(x1, x2, x3),M(y1, y2, y3)) belongs to R.

We can divide the proof into three cases: First, assume that there exist
i and j, i 6= j such that xi = xj . We know that the relation R is the graph
of a function, then for each x ∈ D, there exists only one y ∈ D such that
(x, y) ∈ R. Then, the equation xi = xj implies the fact that we must have
yi = yj . Hence we deduce that (M(xi, xi, xk),M(yi, yi, yk)) = (xi, yi) since
M is a majority operation (note that this is true for every permutations of
these tuples).

Assume now that x1, x2 and x3 are pairwise di�erent. We have then two
sub-cases: y1, y2 and y3 are pairwise di�erent or not.

Assume that there exist i and j, i 6= j such that yi = yj . Then, we have
xi, xj B kerh, with h the function such that R = h•. Since M is a majority
operation, we have M(yi, yi, yk) = yi. However, as we have de�ned M , we
must have M(xi, xj , xk) = xi since M outputs the �rst element belonging
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to a kernel. Note that again, this fact is true for every permutations of
(xi, xj , xk) and their corresponding tuple (yi, yj , yk).

Assume �nally that y1, y2 and y3 are pairwise di�erent. By Lemma 5.1.5,
we know that there exists f ∈ [F ] such that xi, xj B ker f if and only if there
exists g ∈ [F ] such that yi, yj B ker g, for every i, j ∈ {1, 2, 3}.

Hence, if at least two elements between xi, xj and xk belong to an equiv-
alence class of a minimal kernel ker f , say xj and xk, we output the �rst
one in the input, i.e. xj . We have then xj , xk B ker f . By Lemma 5.1.5,
there exists a function g ∈ [F ] such that yj , yk B ker g holds, and we know
that xi cannot belongs to the same equivalence class than xj and xk for any
non-trivial kernel. Then by the same lemma, yj must be the �rst element
among yi, yj and yk which belongs to an equivalence class of a kernel, andM
must output it. We have then (M(xi, xj , xk),M(yi, yj , yk)) = (xj , yj). Now,
suppose that there are no two elements among xi, xj and xk which belong to
an equivalence class of a kernel, that is, we have xi, xj 7 kerh, xi, xk 7 kerh
and xj , xk 7 kerh, for kerh a maximal non-trivial kernel. We know that
it is also the case for yi, yj and yk by Lemma 5.1.5. Thus, following our
de�nition, M must acts like a projection on the �rst element. We have then
(M(xi, xj , xk),M(yi, yj , yk)) = (xi, yi), so the application of M to F • leads
again to a tuple in F •: M is then a polymorphism of F •. 2

It is a well-know result (Theorem 4.2.1) that csp(S) is in P if the set
S of relations is closed under a majority. We conclude that, for a set F of
unary relations over a �nite domain D, the linear width widthF = 1 implies
the tractability of csp(F •).

5.2 Ternary domains: Dichotomy criterion based on

the kernel width

In this section, F will be a set of arbitrary unary functions over a ternary
domain. Before introducing our Dichotomy Theorem of the problem csp(F •)
through the study of the kernel width, we need to show some intermediary
results. In the sequel we will deal with tractable and intractable cases, and
the last part of this section presents the Dichotomy Theorem and the meta-
problem study. Notice that this Dichotomy Theorem is already cover by
Bulatov's result in [Bul06a]. However this is the �rst Dichotomy Theorem
proved via the kernel width method.

We consider in the sequel that F • is a core, otherwise the problem be-
comes a problem over a domain of size less than or equals to 2, which is
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a well-know problem covered by Schaefer's results in [Sch78]. Thus remark
that F • which is a core over a ternary domain cannot be closed under any
constant operations.

5.2.1 Intermediary results

First, we need the notions of circular and swap permutation on a ternary
domain.

De�nition 5.2.1 A circular permutation c on a ternary domain D = {0, 1, 2}
is a permutation satisfying the condition c(x) = (x+k) mod |D| with k ∈ D,
for all x ∈ D. A swap permutation s on D = {0, 1, 2} is a permutation satis-
fying the conditions s(x) = y, s(y) = x and s(z) = z, for distinct x, y, z ∈ D.
The set {x, y} is called swap s.

Remark that since we work on a ternary domain, a non-empty kernel
ker f must have exactly one equivalence class. Thus, to lighten the notation
in this section, we will consider kernels as sets of two or three elements. For
instance, ker f = {0, 2} and ker g = {0, 1, 2} = D. Notice also that kernels
of unary functions on a ternary domain are limited to only one equivalence
class. This can be easily veri�ed by the pigeonhole principle. Moreover,
the size of these unique equivalence classes can only be equal to 0, 2 or 3.
Therefore we identify in the sequel the kernel of a unary function over a
ternary domain with its singleton equivalence class.

We need in this section the notion of circular permutation, swap permu-
tation and swap set. The reader can �nd de�nitions of all other operations
used in this chapter, like a majority operation or a 2-semilattice operation
for instance, in the De�nition section of Chapter 4.

Before introducing our results, we �rst need the following lemma.

Lemma 5.2.2 Let F be a set of unary functions over a ternary domain D,
and let f, g ∈ F . The following conditions hold:
(i) if ran g * ker f and |ker f | = 2 then ran(f ◦ g) = ran f ;
(ii) if ran g * ker f and |ker g| = 2 then ker g = ker(f ◦ g).

Proof: Let ran g * ker f and |ker f | = 2. First, remark that |ker f | = 2
implies |ran f | = 2. We have to show that ran f ⊆ ran(f ◦ g). Let y ∈ ran f .
Suppose that for all x ∈ ran g, the inequality f(x) 6= y holds. Let z ∈ ran f ,
with z 6= y. So for all x ∈ ran g, we have f(x) = z since |ran f | = 2, which
implies ran g ⊆ ker f : contradiction with the assumption.

Let ran g * ker f . We have to show that ker(f ◦g) ⊆ ker g. Suppose that
there exist x, y ∈ ker(f ◦g) such that g(x) 6= g(y). Since |ran g| = 2, we have
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{g(x), g(y)} = ran g. However the equality (f ◦ g)(x) = (f ◦ g)(y) holds, so
we have the inclusion ran g ⊆ ker f , which is a contradiction. Thus, for all
x, y ∈ ker(f ◦ g), we have x, y ∈ ker g. 2

Proposition 5.2.3 Let D be a ternary domain and F be a set of unary
functions on D. If F does not contain any permutations, then the number
of independent kernels in F corresponds to the width of F .

Proof: Let F be a set of unary functions on a ternary domain D such that
F does not contain any permutations. Hence, each function f ∈ F has a
kernel such that |ker f | = 2, or |ker f | = 3 if f is a constant function. Then
we show that it is su�cient to compare independent kernels in F to compute
the kernel width widthF , that is, we do not need to compute [F ] to know
the width of F .

We know by Lemma 5.1.1 that for all f, g ∈ F , ker g ⊆ ker f ◦ g holds.
Moreover, if |ker g| = 3 then |ker f ◦ g| = 3, so f◦g does not change the width
of F . If |ker g| = 2, so |ker f ◦ g| can only be greater or equal than |ker g|.
If |ker g| = |ker f ◦ g|, then we have necessary the equality ker g = ker f ◦ g,
so f ◦ g does not change the width of F . If |ker f ◦ g| is strictly greater than
|ker g|, the only solution is |ker f ◦ g| = 3 and we can deduce that f ◦ g is a
constant function, so it can not change the width of F .

We can conclude there is no functional compositions which implies a
longer anti-chain of kernels of functions in [F ] if F does not contain any
permutations. 2

Proposition 5.2.4 Let f be a unary function on a ternary domain D such
that |ker f | = 2 and s be a swap permutation on D. Combinations of f
and s can only produce functions with the same kernel as f if and only if
swap s = ker f .

Proof: Let f be a function on D such that |ker f | = 2 and s be a swap
permutation on D such that swap s = ker f . Let a, b ∈ D such that ker f =
{a, b} = swap s. Then we have f ◦ s = f since (f ◦ s)(a) = f(b) and
(f ◦ s)(b) = f(a), and for c ∈ D such that a 6= c 6= b, we have s(c) = c.

By Lemma 5.1.1, we know that the inclusion ker f ⊆ ker(s ◦ f) holds.
Now aiming for a contradiction, suppose that ker(s ◦ f) * ker f . So there
exists c ∈ D such that c ∈ ker(s ◦ f) and c /∈ ker f . Thus, we have necessary
|ker(s ◦ f)| = 3 since |ker(s ◦ f)| > |ker f |. Then, s◦f is a constant function.
Since s is a swap permutation, so a permutation, f must be a constant
function. Contradiction with |ker f | = 2. Therefore we must have ker f =
ker(s ◦ f).
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Now, let f and s be such that swap s 6= ker f . Without loss of generality,
let a, b ∈ D such that swap s = {a, b} and b, c ∈ D such that ker f = {b, c},
with a 6= c. Assume that f(a) = x and f(b) = f(c) = y, with x, y ∈ D. So
f(s(a)) = f(b) = x, f(s(b)) = f(a) = y and f(s(c)) = f(c) = x. Then, we
have ker(f ◦ s) = {a, c}.

We conclude that we can only produce by combinations of f and s func-
tions with the same kernel as f if and only if swap s = ker f . 2

Proposition 5.2.5 Let f and g be two unary functions on a ternary domain
D with incomparable kernels and s a swap permutation such that ker f ∩
ker g /∈ swap s. Then ker(f ◦ s) = ker g and ker(g ◦ s) = ker f .

Proof: Let f , g and s be such functions. Assume that ker f ∩ ker g = a, for
a ∈ D. Then, we have swap s = {b, c}, with b, c ∈ D and a, b, c pairwise
di�erent. Moreover, we must have ker f = {a, b} and ker g = {a, c} since we
have ker f ∩ ker g = a and kernels ker f and ker g are incomparable.

Hence, the equations f(a) = f(b) and g(a) = g(c) hold. Then we can
deduce the equations (f ◦ s)(a) = (f ◦ s)(c) and (g ◦ s)(a) = (g ◦ s)(b) since
s(a) = a, s(b) = c and s(c) = b. We conclude that ker f ◦ s = ker g and
ker g ◦ s = ker f . 2

Corollary 5.2.6 Let f and g be two unary functions on ternary domain D
with incomparable kernels and s a swap permutation such that ker f ∩ker g /∈
swap s. Let F be the set of functions containing f , g and s only. Then
widthF = 2.

Proof: Immediate by Proposition 5.2.5 and Lemmata 5.1.1 and 5.2.2. 2

Corollary 5.2.7 Let f be a unary function on a ternary domain D such
that |ker f | = 2 and s be a swap permutation on D such that ker f 6= swap s.
Let F be the set of functions containing f and s only. Then widthF = 2.

Proof: Immediate by Proposition 5.2.4 and by Corollary 5.2.6. 2

Proposition 5.2.8 Let f and g be two unary functions on a ternary domain
D with incomparable kernels and s a swap permutation such that ker f ∩
ker g ∈ swap s. Then we can produce a function h such that f , g and h have
pairwise incomparable kernels.

Proof: Let f , g and s be such functions. Assume that ker f ∩ ker g = a,
for a ∈ D. By the pigeonhole principle, we have necessarily ker f = swap s
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or ker g = swap s. Assume without loss of generality that we have ker f =
swap s = {a, b}, with b ∈ D such that a 6= b. Hence, we must have ker g =
{a, c}, with a, b, c pairwise di�erent.

The equation g(a) = g(c) holds. Hence, we have (g ◦ s)(b) = (g ◦ s)(c)
since s(a) = b, s(b) = a and s(c) = c. Then we have a new function h = g ◦s
with an incomparable kernel compared to ker f and ker g. 2

Proposition 5.2.9 Let f be a unary function on a ternary domain D such
that |ker f | = 2 and p a permutation on D that is neither a swap permutation
nor the identity. Then we can produce by composition two functions g and
h such that kernel of f , g and h are pairwise incomparable.

Proof: Let f be a function on D such that |ker f | = 2 and p a permutation
on D that is not a swap permutation nor the identity, that is, p is a circular
permutation. Let a, b ∈ D be such that ker f = {a, b}. Assume, without loss
of generality, that p is the permutation (abc). Then ker(f ◦ p) = {a, c} and
ker(f ◦ p ◦ p) = {b, c}. 2

The following lemma is true for a set F of co-Boolean functions. However,
observe that a set of unary functions over a ternary domain which does not
contain any permutation is also a set of co-Boolean functions. Thus this
lemma is available in this chapter if there is no permutations in F .

Lemma 5.2.10 Let F be a set of co-Boolean functions. The relation FH
rhs is

not closed under a majority operation (respectively a minority operation) if
and only if we have a sub-matrix of the matrix representing FH

rhs presenting
the shape

f1 f2 f3

b1 a2 a3

a1 b2 a3

a1 a2 b3

and if there is no row r such that r[f1]r[f2]r[f3] = a1a2a3 (respectively
r[f1]r[f2]r[f3] = b1b2b3) in the matrix representing FH

rhs.

Proof: The "if" direction is obvious; consider the other one. Take:

f1 f2 f3

a1 a2 a3

b1 b2 b3
c1 c2 c3
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with |{ai, bi, ci}| = 2 for 1 ≤ i ≤ 3. Assume that this sub-matrix is not
closed under a majority operation. Without loss of generality we can assume
a1 = b1, then we can rewrite our sub-matrix like this:

f1 f2 f3

a1 a2 a3

a1 b2 b3
c1 c2 c3

Remark that we must not have a2 = b2 or a3 = b3 otherwise it is clear that
the sub-matrix is closed under a majority operation. Then, we must have
(a2 = c2 and b3 = c3) or (b2 = c2 and a3 = c3). Thus, we obtain:

f1 f2 f3

a1 a2 a3

a1 b2 b3
c1 a2 b3

or
f1 f2 f3

a1 a2 a3

a1 b2 b3
c1 b2 a3

that is, the expected shape. Moreover, since FH
rhs is not closed under a

majority, we cannot have a row r in FH such that we have r[f1]r[f2]r[f3] =
a1a2b3 or r[f1]r[f2]r[f3] = a1b2a3 (depending of the sub-matrix we have).
Proof for the minority operation follows exactly the same pattern. 2

Let's call the shape of the matrix in Lemma 5.2.10 an A-shape, that is,
we will say that FH contains an A-shape if we have a sub-matrix of the
matrix representing FH

rhs of the form

f1 f2 f3

b1 a2 a3

a1 b2 a3

a1 a2 b3

and if there is no row r such that r[f1]r[f2]r[f3] = a1a2a3 (respectively
r[f1]r[f2]r[f3] = b1b2b3) in the matrix representing FH

rhs.
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5.2.2 Tractable case

Let us recall some known facts. Let F be a set of unary functions and f, g ∈ F
be two unary functions. We say that ker f and ker g are incomparable kernels
if ker f * ker g and ker g * ker f hold. Recall also that widthF is the
maximal number of incomparable non-empty kernels in [F ].

Proposition 5.2.11 Given a set F of unary functions over a ternary do-
main D with widthF ≤ 2, we must have F • closed under a majority opera-
tion.

Proof: First, observe that if we have widthF = 1, we can conclude by
Theorem 5.1.7.

Thus, assume we have widthF = 2. We prove that F • is closed under
the following conservative majority operation: M(x, y, z) = t, with x, y and
z pairwise di�erent and t such that t = ker f1∩ker f2 holds with f1, f2 ∈ [F ]
two functions with incomparable kernels.

Let f ∈ [F ] such that f• = {(a1, a2); (b1, b2); (c1, c2)}. Assume without
loss of generality that ker f1 = {0, 1} and ker f2 = {1, 2} with f1, f2 ∈
[F ] being two functions with incomparable kernels. Hence we must have
M(π(0), π(1), π(2)) = 1 for every permutation π.

Thus, we have the equation M(a1, b1, c1) = 1. We split the proof into
two sub-cases. Fist, assume that a2, b2 and c2 are pairwise di�erent. Then
we must have M(a2, b2, c2) = 1. This is the case if and only if f is the
identity operation or a swap permutation such that swap f = {0, 2}. The
identity operation is always included in the closure of every set of functions,
and since we have widthF = 2 with ker f1 and ker f2 incomparable, by
Corollary 5.2.6, we know that such a swap permutation will not increase the
width of F . Then the identity operation and such a swap permutation are
allowed.

Second, assume that at least two elements among a2, b2 and c2 are equal.
Without loss of generality, assume that a2 = b2. This implies f(a1) = f(b1)
andM(a2, a2, c2) = a2. Since 1 belongs to the kernel of any function f ∈ [F ],
we can be sure that the tuple (1, a2) belongs to f•.

We conclude that M is a polymorphism of F •. 2

5.2.3 Intractable case

This section presents the result of NP-completeness of csp(F •) where we
have widthF = 3 on a 3-element domain. Recall that, thanks to Lemma 4.2.6,
one can assume that F • is a core.
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We will show that, for every set F of unary functions on a ternary domain
such that widthF = 3, F • cannot be closed under any constant operations,
any majority operations, any a�ne operations, any binary idempotent op-
erations that are not projections and any semi-projections. Then we deduce
by Rosenberg's list [Ros86] that the complexity of csp(F •) is NP-complete.

Proposition 5.2.12 Let F be a set of unary functions on a ternary domain
D such that widthF = 3. Then F • cannot be closed under any constant
operation.

Proof: We recall we consider F • to be a core over a ternary domain, and by
Lemma 4.2.6, we can consider that F • contains the graph of every constant
functions. It is clear that a set of relations containing at least the graph of two
di�erent constant functions cannot be closed under any constant operation.

2

Proposition 5.2.13 Let F be a set of unary functions on a ternary domain
D such that widthF = 3. Then F • cannot be closed under any majority
operation.

Proof: Let f, g, h ∈ F be three functions such that their kernel are pairwise
incomparable. Without loss of generality, we de�ne f , g and h as follows:

x f(x) g(x) h(x)
0 af bg bh
1 bf ag bh
2 bf bg ah

with af , bf , ag, bg, ah, bh ∈ D.
Remark that FH

rhs is an A-shape like presented in Lemma 5.2.10. Thus,
this lemma we conclude that F • cannot be closed under any majority oper-
ation. 2

Proposition 5.2.14 Let F be a set of unary functions on a ternary domain
D such that widthF = 2. Then F • cannot be closed under any minority
operation.

Proof: Let f, g ∈ F be two functions such that their kernel are incomparable.
Without loss of generality, we de�ne f and g as follow:

x f(x) h(x)
0 af bh
1 bf bh
2 bf ah
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with af , bf , ah, bh ∈ D.
Let m be a minority operation. Then, we must have the equation

m(af , bf , bf ) = af , and that implies the equation m(0, 1, 2) = 0. Thus,
we must have the equation m(bh, bh, ah) = bh, but this is a contradiction
with the fact that m is a minority operation. 2

Proposition 5.2.15 Let F be a set of unary functions on a ternary do-
main D such that widthF = 3. Then F • cannot be closed under any semi-
projection.

Proof: The proof is the same used for Proposition 4.4.14. Let f, g, h ∈ F be
three functions such that their kernel are pairwise incomparable. Without
loss of generality, we de�ne f , g and h as follow:

x f(x) g(x) h(x)
0 af bg bh
1 bf ag bh
2 bf bg ah

with af , bf , ag, bg, ah, bh ∈ D.
Let s be a semi-projection that is a polymorphism of F •. Let x, y, z ∈ D

be values such that |{x, y, z}| < 3 holds. Without loss of generality, we
consider that s(x, y, z) will project on the last element (here z). Since s
is a polymorphism of F •, we have s(bf , bf , af ) = af , s(bg, bg, ag) = ag

and s(bh, bh, ah) = ah. Then we must have s(1, 2, 0) = s(2, 1, 0) = 0,
s(2, 0, 1) = s(0, 2, 1) = 1 and s(1, 0, 2) = s(0, 1, 2) = 2. This implies that s is
a projection, which is a contradiction since by de�nition, a semi-projection
is not a projection. 2

Proposition 5.2.16 Let F be a set of unary functions on a ternary domain
D such that widthF = 3. Then F • cannot be closed under any binary
idempotent operation which is not a projection.

Proof: Let f, g, h ∈ F be three functions such that their kernel are pairwise
incomparable. Without loss of generality, we de�ne f , g and h as follow:

x f(x) g(x) h(x)
0 af bg bh
1 bf ag bh
2 bf bg ah

with af , bf , ag, bg, ah, bh ∈ D.
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Let q be a binary idempotent operation which is not a projection. Aiming
a contradiction, assume that q is a polymorphism of F •. Since q is idem-
potent, we must have q(bf , bf ) = bf , q(bg, bg) = bg and q(bh, bh) = bh. We
conclude that we must have the inclusions q(1, 2) ⊆ {1, 2}, q(0, 2) ⊆ {0, 2}
and q(0, 1) ⊆ {0, 1}. In other words, q must be conservative.

Moreover, q must not be commutative on tuples (a, b) ∈ D2, that is to
say, for every tuple (a, b) ∈ D2, we have q(a, b) = c and q(b, a) = c such
that c = a if and only if c = b and c = b if and only if c = a. In order
to prove it by contradiction, suppose there exists a tuple (ag, bg) ∈ D2 such
that q(ag, bg) = q(bg, ag) = d with d ∈ D, then we must have the following
result:

0 af 2 bf 0 bg 1 ag 1 bh 2 ah

1 bf 0 af 1 ag 2 bg 2 ah 0 bh
q ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

k c k′ c k d k′′ d k′′ e k′ e

Suppose that the equation k = 0 holds. Then, we must have c = af ,
c = bf , k′ = 2, d = bg, k′′ = 2, e = ah and e = bh. However, we have k′ = 2
and e = bh but (2, bh) /∈ h•.

Suppose now that the equation k = 1 holds. Then, we must have c = bf ,
c = af , k′ = 0, d = ag, k′′ = 1, e = bh and e = ah. However, we have k′ = 0
and e = ah but (0, ah) /∈ h•.

Remark also that q must not be commutative on a tuple (a, b) ∈ D2 such
that the set {a, b} is di�erent to the range of f , g and h. Indeed, suppose we
have af = bg = 0, bf = ag = ah = 1 and bh = 2, thus ran f = ran g = {0, 1}
and ranh = {1, 2}, and assume we have {a, b} = {0, 2}, thus q(0, 2) = q(2, 0)
holds. Since q is a polymorphism of F •, we must have q(af , bf ) = q(bf , af ),
that is to say, q(0, 1) = q(1, 0). But then, we will �nd the same contradiction
as above when we assumed that q(ag, bg) = q(bg, ag) holds.

We see that q must be a binary idempotent conservative operation and
non-commutative on all tuples (a, b) ∈ D2. Hence we must have the following
result:

1 bf 2 bf 1 ag 1 ag 1 bh 2 ah

0 af 0 af 0 bg 2 bg 2 ah 0 bh
q ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

k c k′ c k d k′′ d k′′ e k′ e

Suppose that the equation k = 0 holds. Then, we must have c = af ,
k′ = 0, d = bg, k′′ = 2, e = ah and e = bh. Since for every tuple (a, b) ∈ D2,
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we have q(a, b) = c and q(b, a) = c such that c = a i� c = b and c = b i�
c = a, we see here that q is a projection on the second element.

Suppose now that the equation k = 1 holds. Then, we must have c = bf ,
k′ = 2, d = ag, k′′ = 1, e = bh and e = ah. Since for every tuple (a, b) ∈ D2,
we have q(a, b) = c and q(b, a) = c such that c = a i� c = b and c = b i�
c = a, we see here that q is a projection on the �rst element.

We conclude that if q is a binary idempotent operation which is a poly-
morphism of F •, then q must be a conservative non commutative operation,
and moreover a projection. Then F • cannot be closed under any binary
idempotent operation which is not a projection. 2

Proposition 5.2.17 Let D be a ternary domain, and F be a set of unary
functions on D such that widthF = 3. Then csp(F •) is NP-complete.

Proof: We know by [JCG97] that, for every set of relations S, if the set
of polymorphisms PolS does not contain a constant operation, a majority
operation, a binary idempotent operation, a minority operation or a semi-
projection, then csp(S) is NP-complete.

Let F be such a set of functions. By Propositions 5.2.12, 5.2.13, 5.2.14,
5.2.15 and 5.2.16, we know that PolF • does not contain such operations.
Indeed, notice that we know by Proposition 5.2.14 that PolF • does not
contain any minority operations if we have widthF = 2, so this obviously
holds also for widthF = 3. We conclude that if widthF = 3 holds then we
have csp(F •) NP-complete. 2

5.2.4 Dichotomy Theorem and meta-problem

We can present now the main result of this section.

Theorem 5.2.18 Let D be a ternary domain, and F be a set of unary func-
tions on D. The problem csp(F •) is in P if widthF ≤ 2 holds. Otherwise,
it is NP-complete.

Proof: The proof is direct thanks to Propositions 5.2.11 and 5.2.17. 2

Let's focus now on the meta-problem, that is, the decision if the di-
chotomy criteria is veri�ed or not. Remark we can go further than Proposi-
tion 5.2.3: we do not need to compute the clone [F ] to know the width of F ,
whatever the functions contained in F . Thus, the next proposition allows us
to determine when the Dichotomy Criterion of Theorem 5.2.18 is veri�ed by
just analyzing the kind of functions composing the set F .
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Proposition 5.2.19 Let D be a ternary domain. Let F be a set of unary
functions on D. Then we have widthF = 3 if at least one of these conditions
holds:

(i) F contains at least three functions with incomparable kernels,

(ii) F contains two functions f and g with incomparable kernels and a swap
permutation s such that ker f ∩ ker g ∈ swap s,

(iii) for every f, g ∈ F , we have either ker f ⊆ ker g or ker g ⊆ ker f and F
contains at least one function f such that |ker f | = 2 and a permutation
p that is neither a swap permutation nor the identity, or two di�erent
swap permutations s1 and s2.

If none of these conditions holds, then we have widthF ≤ 2.

Proof:
(i) is obvious.
(ii) is immediate by Proposition 5.2.8.
For (iii), if p is a circular permutation without being the identity, then

we immediately conclude by Proposition 5.2.9. If F contains two di�erent
swap permutations s1 and s2, then swap s1 6= swap s2 holds, and the com-
bination s1 ◦ s2 leads to a circular permutation. Thus, we also conclude bu
Proposition 5.2.9.

If none of these three conditions holds, then one of the following case is
veri�ed:

(1) widthF = 2 and F does not contain any permutation,

(2) widthF = 2 and F contains a swap permutation s such that kerF ∩
ker g /∈ swap s, for any ker f and ker g incomparable kernels,

(3) widthF = 2 and there exists f ∈ F such that | ker f | = 2, and F contains
exactly one swap permutation s such that swap s 6= ker f holds, but does
not contain any circular permutations.

(4) widthF = 1 and there no functions f ∈ F such that | ker f | = 2,

(5) widthF = 1 and there exists f ∈ F such that | ker f | = 2, but F does
not contain any permutation other than the identity,

(6) widthF = 1 and there exists f ∈ F such that | ker f | = 2, and F contains
exactly one swap permutation s such that swap s = ker f holds, but does
not contain any circular permutations.
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For (1), it is immediate by Proposition 5.2.3.
For (2), we conclude thanks to Corollary 5.2.6.
For (3), we can conclude using Corollary 5.2.7. Indeed, since widthF = 1

then for every functions f1, f2 ∈ F such that | ker fi| = 2, we must have
ker f1 = ker f2.

For (4), remark that every kernel must be a trivial kernel, that is either
empty a kernel or kernel with one equivalence class containing all elements
in D. Thus, F contains permutations and constant functions only. It is clear
that we cannot increase the width by combining such functions.

For (5), this is again direct by Proposition 5.2.3.
For (6), since swap s = ker f holds, we conclude thanks to Proposi-

tion 5.2.4. 2

5.3 Homogeneous co-Boolean csp, NP-completeness

and kernel width

In this section, a set of functions F is a set of homogeneous co-Boolean
functions such that for every f ∈ F , we have f(0) = 0 and f(1) = 1, except
for two functions f0 and f1 which are respectively the constant functions
outputting 0 and 1 and which will always be included in F . Thus, for every
function f in F we have ran f ⊆ {0, 1}.

Notice that in this special con�guration, F • must be a core. It is easy
to see that [F ] = F because for every fi, fj ∈ F with fi /∈ {f0, f1}, the
equation fi ◦ fj = fj holds (thus one can see that if n is the biggest number
of incomparable kernels in F , then widthF = n). Remark also that in this
special con�guration, the matrix FH

rhs cannot contain any duplicated rows.
Notice also that F • cannot be closed under any constant operations since F
contains constant functions f0 and f1.

The principal result of this section is the following one. Let F be a set of
functions as presented above, and let D be a �xed domain. If widthF ≥ |D|,
then csp(F •) is NP-complete. Notice that this result does not bring us a
new knowledge on the complexity of such csp because we already know the
dichotomy on graphs of co-Boolean functions (see Theorem 4.3.5). However,
it is the �rst known result about width and NP-completeness over every
cardinality of �nite domain, and we can hope to extend this to every csp

over graph of unary functions.
By Lemma 4.3.1, we know that if FH

rhs is neither closed under majority,
nor minority, nor max, nor min, then csp(F •) is NP-complete. In the fol-
lowing two subsections, we will demonstrate that if widthF ≥ |D| then FH

rhs
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is not closed under majority, nor minority, nor max and and min, allowing
us to conclude immediately about the NP-completeness of csp(F •).

We would like to thank a lot to Vincent Jost and David Savourey for the
proofs of Propositions 5.3.1 and 5.3.3.

5.3.1 Non-stability under Max and Min

We prove in this subsection that if widthF ≥ |D|, then FH
rhs is not closed

under max and min operations.

Proposition 5.3.1 Let F be a set of homogeneous co-Boolean functions
such that for every f ∈ F , equations f(0) = 0 and f(1) = 1 hold, except for
the two constant functions f0, f1 ∈ F outputting 0 and 1. If widthF ≥ |D|,
then FH

rhs is not closed under max operation.

Proof: We prove this proposition for widthF = |D| = n such that the
extension of the proof for widthF ≥ |D| will be trivial. Thus, assume that
we have widthF = |D| = n.

First, observe that FH
rhs is a n2-Boolean matrix such that the �rst row

is composed only with 0s, the second one only with 1s, all row are pairwise
di�erent (otherwise, F • is not a core) and all columns are di�erent (because
all functions are di�erent). Actually, FH

rhs can have more than n columns,
but this does not in�uence the proof.

To prove this proposition, we will show that it is impossible to built such
a matrix that is closed under a max operation (i.e., rows are not closed under
a max operation).

Let FH
rhs a Boolean matrix with n column such that FH

rhs is closed under
max, and such that we does not have the �rst row (i.e. the 0-vector) but
we have the second one (the 1-vector). Consider the row r with the largest
number of 1's, excluding the 1-vector. Let k the number of 1's in r. We
show that k should be equal to n− 1.

Assume that k ≤ n− 2, then there exist at least two 0 in r. Let c1 and
c2 two columns were there is a 0 in r. We know that c1 and c2 should be
di�erent, then there must exists a row r0 that makes the di�erence between
these two columns putting, for instance, a 0 for c1 and a 1 for c2. Hence,
max(r0, r) gives us a row in the matrix with k + 1 values 1 inside, that is a
contradiction with r the row with the largest number of 1.

Thus we must have k = n − 1, that is to say a row r with n − 1 values
1 and only one 0 in a column c. It is clear that if we remove r and c from
the matrix, we obtain an (n − 1)2-matrix verifying the properties of the
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initial matrix, i.e. the stability under max, the pairwise di�erence between
columns, and between rows, where the row with the biggest number of value
1 contains this time n− 2 values 1, and so on.

Hence, it is clear that we need at least n rows to built such a matrix, but
without the 0-vector row. Then we cannot built such a matrix, including the
0-vector, in only n rows.

It is clear that having m > n columns implies the fact that we need m+1
rows. Then, the contradiction still holds. 2

Proposition 5.3.2 Let F be a set of homogeneous co-Boolean functions
such that for every f ∈ F , equations f(0) = 0 and f(1) = 1 hold, except for
the two constant functions f0, f1 ∈ F outputting 0 and 1. If widthF ≥ |D|,
then FH

rhs is not closed under min operation.

Proof: The proof is the same as the proof of Proposition 5.3.1, with the
di�erence that we do not take the 1-vector to build a matrix closed under
min, and then we see that we need at least n+1 rows, including the 1-vector,
to have such a matrix. 2

5.3.2 Non-stability under Majority and Minority

We prove in this subsection that if widthF ≥ |D|, then FH
rhs is not closed

under majority and minority operations. Again, we deal with the case
widthF = |D| = n, and the extension of the proof for widthF ≥ |D| is
trivial.

Recall that the xor operation ⊕ is the binary operation on the Boolean
domain such that x ⊕ y is true (or outputs 1 if you prefer) if and only if x
and y are evaluate to di�erent values, that is, one is evaluate to 1 and the
other to 0.

First, remark that is a matrix is closed under a majority operation, then,
composed with the 0-vector, it is equivalent to say that the matrix is closed
under min operation, and composed with the 1-vector, to the max opera-
tion. Then the non-stability of FH

rhs, such that widthF = |D| = n, under a
majority operation is done by Propositions 5.3.1 and 5.3.2.

If a matrix is closed under a minority operation, then, composed with
the 0-vector, it is equivalent to say that the matrix is closed under the xor
operation, and composed with the 1-vector, to the negation of xor. We will
prove in the following proposition that FH

rhs cannot be closed under xor and
the negation of xor if we have widthF = |D| = n.
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Proposition 5.3.3 Let F be a set of homogeneous co-Boolean functions
such that for every f ∈ F , equations f(0) = 0 and f(1) = 1 hold, except for
the two constant functions f0, f1 ∈ F outputting 0 and 1. If widthF ≥ |D|,
then FH

rhs is not closed under the xor operation.

Proof: To prove this proposition, we will show that it is impossible to built
such a matrix that is closed under the xor operation.

Let FH
rhs be a Boolean matrix with n columns such that FH

rhs is closed
under xor, and such that we does not have the 1-vector row, but we have the
0-vector row. We remark that the set of rows and the xor operation form
a group G since xor is associative, the 0-vector is the identity element, and
each element is its own inverse element, i.e. for every row r, xor(r, r) gives
us the 0-vector.

Consider the set S = (r1, . . . , rk) the minimal basis of G, that is, every
element in G can be obtained through a linear combination of elements in S,
and none of elements in S can be obtain through such a linear combination.
Remark that S does not contain the 0-vector.

Recall that rows in FH
rhs are pairwise di�erent, otherwise F • is not a

core. Then, we can produce a row in G with the help of the following linear
combination

r = λ1r1 ⊕ λ2r2 ⊕ . . .⊕ λkrk

with ⊕ the xor operation. Then, it is clear that we have exactly 2k elements
in G since each rows are pairwise di�erent.

Remark that if there exist two columns c1 and c2 in the base S which
are the same, then one can only produce rows in G such that c1 and c2
remains the same. However, this would be a contradiction with the fact
that columns in G are pairwise di�erent. Then, columns in S must also be
pairwise di�erent.

It is also clear that we need at least log(n) rows to make the di�erence
between n columns. Then, the basis S contains at least log(n) rows, and
G, that is to say the matrix FH

rhs itself, must at least contains 2log(n) rows,
i.e. n rows. Then, if we include the 1-vector, we cannot have such a matrix
closed under xor with n columns and only n rows pairwise di�erent. 2

Proposition 5.3.4 Let F be a set of homogeneous co-Boolean functions
such that for every f ∈ F , equations f(0) = 0 and f(1) = 1 hold, except for
the two constant functions f0, f1 ∈ F outputting 0 and 1. If widthF ≥ |D|,
then FH

rhs is not closed under the negation of xor operation.
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Proof: The proof is the same as the proof of Proposition 5.3.3, with the
di�erence that we do not take the 0-vector to build a matrix closed under
the negation of xor, and then we see that we need at least n+1 rows (actually,
even more), including the 0-vector, to have such a matrix. 2

Now, we can introduce the theorem of this section.

Theorem 5.3.5 Let F be a set of homogeneous co-Boolean functions over a
�nite domain D such that for every f ∈ F , equations f(0) = 0 and f(1) = 1
hold, except for the two constant functions f0, f1 ∈ F outputting 0 and 1. If
the inequality widthF ≥ |D| holds, then csp(F •) is NP-complete.

Proof: Since F is a set of homogeneous co-Boolean functions, by Schaefer's
theorem we know that csp(FH

rhs) is NP-complete if FH
rhs is neither closed

under constant operations which output 0 or 1, nor majority, minority, max-
imum and minimum operations. Lemma 4.2.6 allows us to directly work
with cores. Thus, assuming F is a core, FH

rhs cannot be closed under any
constant operation. Propositions 5.3.1 and 5.3.2 show that, since we have
widthF ≥ |D|, FH

rhs cannot be closed under a maximum or minimum oper-
ation. Finally, Propositions 5.3.3 and 5.3.4 show that, under the condition
widthF ≥ |D|, FH

rhs cannot be closed under a majority or minority opera-
tion. We conclude that csp(FH

rhs) is NP-complete, and then, by Lemma 4.2.4
and Proposition 4.2.3, that csp(F •) is NP-complete. 2

5.3.3 Conjecture

Conjecture 5.3.6 Let F be any set of unary functions. If widthF ≥ |D|,
then csp(F •) is NP-complete.

5.4 Conclusion

We have seen in this chapter the very �rst results on complexity of csp over
unary functions obtained through the study of kernel width. This chap-
ter contained three main results: we proved that, for the csp(F •) problem
over unary functions on every �nite domain, the linear kernel width im-
plies the tractability of csp(F •). Then, we shown a Dichotomy Theorem of
the complexity of the csp(F •) problem over unary functions on a ternary
domain via a criterion based on the kernel width. Finally, we proved the
NP-completeness of homogeneous co-Boolean csp(F •) problem where every
unary function f ∈ F is such that f(0) = 0 and f(1) = 1 hold, except
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for the two constant functions f0, f1 ∈ F outputting respectively 0 and 1.
This result holds for every �nite domain D if the kernel width is higher than
or equals to the cardinality of D. It leads us to the conjecture that, is this
criterion is veri�ed, the csp(F •) problem over unary functions is intractable.

By a lack of time, we have not yet reproved our Dichotomy Theorem
of csp(F •) with non-homogeneous co-Boolean functions, as well as we have
not yet study the complexity of other problems on di�erent family of unary
functions, but we place great hopes in this powerful method to develop new
results on the tractability and intractability of some csp problems on unary
functions.
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