
TCIAIG VOL. X, NO. Y, MONTH YEAR 1

GHOST: A Combinatorial Optimization
Framework for Real-Time Problems

Florian Richoux, Alberto Uriarte, Jean-François Baffier

Abstract—This paper presents GHOST, a combinatorial op-
timization framework that a Real-Time Strategy (RTS) AI
developer can use to model and solve any problem encoded
as a constraint satisfaction/optimization problem. We show a
way to model three different problems as a constraint satisfac-
tion/optimization problem, using instances from the RTS game
StarCraft as test beds. Each problem belongs to a specific level
of abstraction (the target selection as reactive control problem,
the wall-in as a tactics problem and the build order planning
as a strategy problem). In our experiments, GHOST shows
good results computed within some tens of milliseconds. We
also show that GHOST outperforms state-of-the-art constraint
solvers, matching them on the resources allocation problem, a
common combinatorial optimization problem.

Index Terms—Game AI, Real-Time, Strategy, RTS, StarCraft,
CSP, COP, Solver, Optimization, Combinatorics.

I. INTRODUCTION

ONE can see games as a simplification of the world:
the domain is smaller and the rules are easier and

less numerous, thus possibilities are more limited. However,
games are rich enough to propose complex and dynamic
environments where it remains difficult for a computer to
make predictions, have a global understanding of the current
situation, and then make a decision. This is especially true
when information is incomplete, forcing the computer to infer
the global state of the game from pieces of information. This
is the case with Real-Time Strategy (RTS) games, where a
Clausewitz’s fog of war hides the opponent’s moves. Hence,
RTS games are a good domain for testing Artificial Intelli-
gence (AI) techniques that could be applied afterward in other
domains.

As compiled in the surveys from Ontañón et al. [1] and
Robertson and Watson [2], many AI techniques have been
explored in RTS games. However, there are few works in
RTS game AI using Constraint Programming techniques, in
particular through constraint satisfaction/optimization problem
(CSP/COP) models. Among others, branch and bound algo-
rithms have been used to optimize build order in Churchill
and Buro [3]. Genetic algorithms have been used offline
to optimize build orders with multiple objectives, and have
been analyzed in Kuchem et al. [4]. Also, a population-
based algorithm has been used for multi-objective procedural
aesthetic map generation in Lara-Cabrera et al. [5]. Still,

Florian Richoux is with the LINA of the Université de Nantes, France, and
the JFLI of the University of Tokyo, Japan.

Alberto Uriarte is with the Computer Science Department at Drexel
University, Philadelphia, PA, USA.

Jean-François Baffier is with the JST-ERATO Kawarabayashi Large Graph
project at the National Institue of Informatics, Japan.

CSP/COP offers a convenient, homogeneous framework that
is able to model a large number of combinatorial optimization
problems, and proposes various sets of algorithms to solve
them.

CSP/COP is widely used in AI to solve problems such us
pathfinding, scheduling, and logistics [6]. Unlike Mathematical
Programming, CSP/COP algorithms are not usually designed
to solve one specific problem but are general, i.e., they are able
to manage any problem modeled in that framework. Besides
the generality, it is also easy and intuitive to model a problem
with a CSP/COP. Altogether, these bring ideal conditions
to design and develop a user-friendly, easy-to-extend and
generalized solver.

A. RTS problem families

Ontañón et al. propose in [1] to decompose RTS problems
into three families, according to their level of abstraction. From
the higher to the lower level, these families are:

• Strategy corresponds to the high-level decision making
process. This is the highest level of abstraction for game
comprehension. Finding an efficient strategy or counter-
strategy against a given opponent is key in RTS games.
It concerns the whole set of units and buildings a player
owns.

• Tactics are the implementation of the current strategy.
It implies army and building positioning, movements,
timing, and so on. Tactics concerns a group of units.

• Reactive control is the implementation of tactics. This
consists in moving, targeting, firing, fleeing, hit-and-
run techniques (also knows as “kiting”) during battle.
Reactive control focuses on a specific unit.

Problems from different families usually involve different
algorithms to solve them. In this paper, we model one problem
for each of these three families. Then we use our framework
GHOST to solve them without any modifications of its inner
solver.

B. StarCraft: Brood War

StarCraft: Brood War is an RTS game where three different
races (Terran, Protoss and Zerg) can be played, giving an
asymmetric but well balanced strategy game. In this paper,
the term “StarCraft” will actually refer to the game plus its
expansion StarCraft: Brood War.

StarCraft has been a worldwide success, and as of time of
publication, it remains the most sold RTS game with nearly

TCIAIG VOL. X, NO. Y, MONTH YEAR 2

10 millions of copies distributed1. It has been (and still is until
now) particularly popular in South Korea, where a StarCraft
league has been specially created for the game, organizing
televised tournaments between sponsored players and teams.
Korean professional players, or pro-gamers, are reputed to be
among the best StarCraft pro-gamers in the world.

A player has to gather two types of resources (minerals
and gas) in order to construct buildings. Those buildings
are necessary to produce units, to upgrade properties such
as damage points or armor, and to unlock technologies and
special abilities. Producing units costs resources depending on
their properties (hit points, damage points, or size).

The game is played on a rectangular map, discretized into
two types of tiles: walkable tiles, composed of 8 × 8 pixels
and buildable tiles composed of 4 × 4 walkable tiles, i.e.,
32×32 pixels. The difference between these two types of tiles
would be explained in Section IV while introducing the wall-
in problem. Like most RTS games, the map is covered by a
fog of war that obscures players vision of the map everywhere
beyond the range of their own (or allied) units/buildings. This
means that the player cannot know at any time the full state of
the game, unless the whole map is within their vision. Also, the
player has to deal with a supply capacity, limiting the number
of units he can have. The player can increase it by constructing
the right building or producing the right unit, according to the
race.

The flow of time in StarCraft is complex: the game has
7 speed modes from “slowest” to “fastest” where “normal”
corresponds to the regular frame rate (14.96 logical frames per
second, against 23.81 for the fastest mode). This is why when
we will write about in-game time, all along this paper and in
particular in Section V, we will refer to logical frames (simply
denoted as frames) rather than seconds to avoid confusions .
In the fastest mode, one logical game frame takes 42 ms. In
StarCraft AI competitions, it is necessary for bots to perform
calculations in under 55 ms per frame; a bot that takes more
than 55 ms per frame in 200 frames or more automatically
loses the game.

C. Goals and summary

The research presented in this paper is an extension of
Richoux et al. [7], where the problem to make a wall at a
given chokepoint (a narrow passage) in StarCraft has been
modeled and solved thanks to an ad-hoc algorithm.

The research presented in this paper has two goals:
• To present to the RTS AI community our framework

GHOST, its architecture, how to model different prob-
lems with it, and the results we obtained.

• To show that Constraint Programming can be successfully
used in RTS AI at any level of abstraction.

The paper is organized as follows: In Section II, we give
a short introduction on constraint satisfaction/optimization
problems, how they model problems, and what kind of al-
gorithms exists to solve them. Then, we present GHOST
architecture, what user is targeted, how to use it to solve

1http://www.msnbc.msn.com/id/18925251/

an already encoded problem, and how to write your own
problems via GHOST. Sections III, IV and V give details
about three different problems, each one from a specific
level of abstraction (from the lower to the higher: Reactive
Control, Tactics and Strategy), how we model them into a
CSP/COP and what results we obtain by applying GHOST.
Section VI matches GHOST with state-of-the-art constraint
solvers. Finally, this paper concludes with future work.

II. GHOST: A GENERAL META-HEURISTIC
OPTIMIZATION SOLVING TOOL

GHOST is a combinatorial optimization framework de-
signed to tackle real-time problems, helping a programmer to
model his/her problem and to solve it using the inner solver,
without needing parameter tuning or advanced knowledge in
Constraint Programming. RTS games exhibit many real-time
combinatorial optimization problems that can be modeled and
solved via a Constraint Programming framework. Moreover, a
solver dealing with such problems must be fast: in the game
industry, only a small percentage of CPU time is allocated for
AI (usually no more than 10%). This is particularly true for
RTS games, where the AI has a small amount of time (often
less than 100 ms) to solve a problem. For instance, while some
problems can be solved within several frames, other problems
such us target selection or pathfinding need a solution as soon
as possible (optimally within one frame).

A. A brief introduction to CSP/ COP
Constraint Satisfaction Problems (CSP) and Constraint Op-

timization Problems (COP) are two close formalisms exten-
sively used in Artificial Intelligence to solve combinatorial
optimization problems. Constraint Programming allows an
intuitive and uniform way to model problems, as well as
different general algorithms able to solve any (decidable)
problems modeled by a CSP or a COP.

The difference between a CSP and a COP is simple:
• A CSP models a satisfaction problem, i.e., a problem

where all solutions are equivalent; the goal is then to
just find one of them, if any. For instance: finding a
solution of a Sudoku grid. Several solutions may exist,
but finding one is sufficient, and no solutions seem better
than another one.

• A COP models an optimization problem, where some
solutions are better than others. For instance: Several
paths may exist from home to workplace, but one of them
is the shortest.

Formally, a CSP is defined by a tuple (V , D, C) such that:
• V is a set of variables,
• D is a domain, i.e., a set of values for variables in V ,
• C is a set of constraints.
A constraint c ∈ C can be seen as a k-ary predicate

c : V k → {>,⊥} where > can be semantically interpreted
as true and ⊥ as false. Thus, regarding the value of the vector
V k, we say that c is either satisfied (equal to >) or unsatisfied
(equal to ⊥).

Notice also that D should formally be the set of the domain
for each variable in V , thus a set of sets of values. However,

http://www.msnbc.msn.com/id/18925251/

TCIAIG VOL. X, NO. Y, MONTH YEAR 3

it is common to define the same set of values for all variables
of V , thus one can simplify D to be the set of values each
variable in V can take.

A COP is defined by a tuple (V , D, C, f) where V , D
and C represent the same sets as a CSP, and f is an objective
function to minimize or maximize.

Upon a CSP or a COP, one can build a CSP formula
or a COP formula, respectively. A CSP/COP formula is a
conjunction of constraints from C, each constraint taking their
variables from V . We say a CSP/COP formula is satisfied if
there exists an assignment q : V → D such that each constraint
of the formula is satisfied. Considering the vector v ∈ V n of
variables used in a CSP/COP formula, a vector z ∈ Dn such
that ∀i ∈ {1, n}, z[i] = q(v[i]) is called a configuration. Since
CSP/COP models a specific problem P , a CSP/COP formula
represents an instance of P .

Roughly speaking, there are two different kinds of algo-
rithms to solve CSP/COP problems:

• Tree-based search algorithms, also called complete
algorithms, completely explore the search space for so-
lutions. These algorithms use smart moves (such as
backtracking or forward checking) to localize and avoid
dead-ends in the search space.

• Meta-heuristics, also called incomplete algorithms, are
based upon local moves to find optimums, rather than
looking at the problem as a whole. In practice, these
algorithms are more suitable to handle industrial-size
problems within a reasonable runtime. On the other hand,
they cannot prove they have found an optimal solution,
neither they cannot prove there are no solutions to the
given problem.

GHOST uses a meta-heuristic algorithm, Adaptive Search
from Codognet and Diaz [8], as the heart of its solver. The
reason we have chosen a meta-heuristics is simple: to solve
combinatorial optimization problems while playing a RTS
game, the solver needs to find a solution very quickly, often
within some tens of milliseconds, which is virtually impossible
with tree-based search algorithms. Although it is not a well-
known algorithm, we have chosen Adaptive Search because
it is currently, to our knowledge [9], one of the fastest meta-
heuristic algorithm.

In the next sections, we will see that looking for the optimal
solution is not always an interesting strategy for RTS games.
Indeed, it is sufficient to have a solution “optimal enough” in
some tens of milliseconds rather than spending seconds to find
a global optimum. Also, the reader has to keep in mind that
since meta-heuristics are stochastic methods, two runs on the
same problem instance can produce to two different solutions
within the same runtime. This is why results in this paper
are the average of 10 to 100 repeated experiments, regarding
the problem. These results with GHOST are very good on
all tested problems, and often better than those produced by
current state-of-the-art techniques.

B. GHOST architecture

GHOST is a C++11 framework2, under the GNU GPL
v3 license, designed to solve CSP/COP problems a game
developer could implement, in particular those concerning AI
and real-time strategy games . Two different users are targeted:

• The casual user, who only wants to use GHOST to solve
an already encoded problem, like the three problems
presented in the next sections. This user only needs to
instantiate variables, the domain, constraints and possibly
an objective to describe the instance of his problem, and
to call the function solve of the inner solver to run the
search. This is done in 5 short C++ lines.

• The developer user, who has a specific problem not
written with GHOST yet. GHOST has been designed to
make easy the implementation of new problems without
changing a single line in the solver and the existing code,
and without expertise needed in Constraint Programming.
Also, GHOST inner solver has been designed to have as
few parameters as possible, to avoid tedious and time-
consuming parameters tuning before obtaining interesting
results.

GHOST is implemented around five main C++ classes:
Variable, Domain, Constraint, Objective and
Solver3.

Fig. 1. GHOST architecture: In red, the satisfaction inner loop, running for
x microseconds top. In blue, optimization mechanisms. The whole process,
excluding optimization post-process, runs under y microseconds. Both x and
y are user inputs

The function solve defined in Solver follows the steps
exposed in Figure 1. It is composed of two main loops: the
outer loop for optimization, containing the inner loop for
satisfaction. The satisfaction part, in red in Figure 1, only
tries to find a possible solution among all configurations,
i.e., tries to find an assignment of each variable such that
all constraints of the CSP are satisfied. It is possible to call
Solver::solve without defining any objective functions.
In that case, a default objective is applied, doing nothing
special, and the solver will output a solution that satisfied all
constraints, if it finds one.

If a “real” objective function is set, then the optimization
part, in blue in Figure 1, is triggered. Furthermore, it will
influence the satisfaction part (finding a valid solution) if
the objective implements optional heuristics to select the

2Source code available at github.com/richoux/GHOST
3See GHOST manual pages (richoux.github.io/GHOST/) for more details

https://github.com/richoux/GHOST
http://richoux.github.io/GHOST/

TCIAIG VOL. X, NO. Y, MONTH YEAR 4

variable to change and the value to assign, in case the current
configuration is not a solution.

The optimization part also applies two optional post-process
optimizations: one on the output of the satisfaction loop, and
one on the final output, giving the solution returned by the
solver. We will detail the purpose of such functions later, in
particular in Section IV.

The fundamental part in the optimization part is the opti-
mization loop itself. To explain how this loop works, we have
to introduce the two temporal parameters in GHOST. The
function solve takes two parameters: The first one (which is
mandatory) is the satisfaction timeout x in µs, i.e., if a valid
solution is not found within x µs, we leave the satisfaction
loop without a valid one. The second parameter (which is
optional) is the optimization timeout y in µs. It corresponds
also to the total runtime of GHOST, modulo the post-process
after the optimization loop (which is negligible in practice and
should be about 100 times smaller than y). If the y parameter
is not given, then it is set to 10 times x.

Thus, the optimization loop repeats n times the satisfaction
loop, and receives m ≤ n valid solutions. After receiving a
new solution from the satisfaction loop, and applying an even-
tual satisfaction post-process, it calls the objective function
to compute the optimization cost, compares it with its saved
solution (if any) and keeps the solution with the lower cost.
Then it repeats the satisfaction loop to obtain a new solution,
and so on, until y µs are reached.

In a way, GHOST is applying a sort of Monte Carlo
sampling. Notice that this is not MCTS. It would certainly be
possible to implement a MCTS though GHOST, by twisting
derived classes from Variable, Domain, Constraint
and Objective, however the authors do not recommend to
use GHOST this way, since it should be more efficient to
develop a proper, ad-hoc MCTS program.

There is a third and last parameters in the solver: the length
of the tabu list. Indeed, Adaptive Search contains a tabu list
of explored variables in order to not revisit the same variable
too soon during the search. The tabu parameter is then a
number expressing how long the solver has to wait before
being allowed to revisit an explored variable. Actually, we
also have implemented escape mechanisms to not make this
tabu list strict, by allowing the solver to draw a tabu variable if
there are really no other interesting variables. GHOST’s tabu
list is thus more like a priority list. During our experiments,
we found that a tabu length of |V | − 1 provided optimal
performance. It is then a priori not necessary to tune this
parameter, however this remains possible to the developer user.

A developer user has to build his own classes upon
Variable, Domain, Constraint and Objective,
by inheriting from them. For instance, to create a
class of variables representing units, this is done
by class Unit : public Variable. Classes
composed of other classes, like Domain, which needs
to know on what variables it will work with, must
instantiate the right templates. Thus, declaring the
domain for the target selection problem is done by
class TargetDomain : public Domain<Unit>.

Concerning objective functions, GHOST has been designed

to minimize their value. If a developer user needs to maximize
an objective function f , this can be simply adapted to GHOST
by defining objective functions 1/f or −f . Our framework
is designed to deal with mono-objective optimization problem
only, thus, one can only choose at most one objective function
at the time before running the solve function. However, the
objective function can be dynamically changed between two
calls of solve. The choice of designing a mono-objective
framework is pragmatic: multi-objective solvers are in gen-
eral significantly slower, since dealing with more complex
problems. Multi-objective solvers are also more difficult to
implement, which makes harder one goal of GHOST: to
propose a framework both easy to use and easy to extend
by implementing new problems.

In the next three sections, we explain how we modeled a
reactive control problem, a tactic problem and a strategy prob-
lem with a respective CSP/COP, and what results we obtained
by applying GHOST. We would like to emphasize that neither
modifications or optimizations of the solver have been done
to manage these different problems, as well as the resources
allocation problem in Section VI. The core of the solver, i.e.,
everything in the Solver class, remains unchanged. Even
if post-processes are defined differently in their respective
Objective classes, the way they are included and called
into the solver is rigorously the same.

III. REACTIVE CONTROL PROBLEM: TARGET SELECTION

Reactive control problems have been fairly well studied for
StarCraft, with many different techniques applied. Synnaeve
and Bessière [10] propose a Bayesian model allowing units to
move in groups without being in each other’s way or finding
the right distance to attack. Uriarte and Ontañón [11] use influ-
ence maps for kiting, i.e., moving backward while the weapon
is in cooldown and then attacking forward when it is ready
to shoot. Finally, Churchill et al. [12], [13] present a heuristic
search method that makes combat outcome predictions. These
two last papers are also among the rare ones dealing with the
target selection problem in StarCraft.

A. Problem statement and model

The target selection problem is a classical reactive control
problem that a player has to deal with it several times in each
fight. Its satisfaction version is simple; it assigns to each unit of
a fighting group a reachable target, i.e., an enemy unit within
our unit range.

In addition, one has also to take into account the waiting
time between shots, also known as cooldown. Each unit type
has different cooldowns. We can now describe the target
selection problem with the following CSP:

CSP model for the target selection problem:
Variables: A group of our units.
Domain: A group of enemy units.
Constraints: Each living, ready-to-shoot unit must aim a living
enemy within its range, if any.

The target selection problem is a frame-by-frame problem:
We only consider the question, “what enemy should I shoot

TCIAIG VOL. X, NO. Y, MONTH YEAR 5

this frame?”, without looking at micro-management moves
like kiting. This problem has been studied by Furtak and
Buro [14] as an attrition game where they proved that this
problem is in P-SPACE.

Usually, RTS games define specific properties to each
unit type making the target selection more subtle. Thus in
StarCraft, each unit type has a size (small, medium or large),
and a damage type (concussive, normal or explosive). Table I
shows the damage efficiency according to the aimed unit size
and the shooter damage type. For instance, a normal-damage
unit will always afflict a target with full damage, whatever
the target size. But a concussive-damage unit, like a Terran
Vulture, will only inflict 5 damage points against a large unit
like a Terran Tank, instead of 20 damage points as usual.
Moreover, some units have a splash damage, afflicting damage

TABLE I
DAMAGE EFFICIENCY MATRIX IN STARCRAFT

Damage Type

Size Concussive Normal Explosive

Small 100% 100% 50%
Medium 50% 100% 75%
Large 25% 100% 100%

to any unit inside an area. In StarCraft, there are two types
of splash damage: the linear splash, where the damage area is
a line to the target; and the radial splash, where the damage
area is a circled shockwave around the target with three splash
radiuses. The first radius afflicts 100% of damage, the second
one 50% and the last one 25%.

Splash damage combined with damage efficiency leads
to interesting optimization opportunities. In this work, we
investigate two different objective functions:

• Max damage, where our group tries to deal as much
damage as possible within the current frame.

• Max kill, where our group tries to kill as much enemy
units as possible within the current frame.

Notice that these two objectives are more complex than look-
ing for the maximal damage or the maximal dead enemies each
unit can do independently. For example, imagine a scenario
where we have two units U1 and U2 and two enemies E1 and
E2, such that U1 can afflict 10 damage points to E1 and 9
to E2, U2 can afflict 8 damage points to E1, but E2 is out
of range, and E1 has 5 hit points (HP) left. The best global
assignment is U1 to E2 and U2 to E1, even if U1 deals more
damage to E1.

B. GHOST implementation and results

Our instance is a mirror setup composed of four lines of
units. Line 1 contains 5 marines; line 2 has 2 Goliaths and 2
Vultures; line 3 has 2 Siege Tanks in tank mode and 2 Ghosts;
and line 4 has 1 Siege Tank in siege mode. We chose Terran
units since many of them are long-range attack units and this
makes the target selection problem more interesting. Also, we
place them close to each other to make the Terran Siege Tank’s
splash damage more significant.

We use a custom simulator to emulate combats between
two group of units. The simulator takes care of cooldowns,
each unit HP, damages and Euclidean distances between units.
Ranges, damage efficiency and splash damage are directly
managed by GHOST. It is important to emphasize that, in
this simulator, enemy units are applying very simple target
selection heuristics: they aim the unit with the lowest current
HP / initial HP ratio, or in other words, the unit which is the
most likely to die soon. If several units share the same lowest
ratio, then enemy units select randomly one among them.

Our simulator does not implement:
• Healing, repair, HP or shield regeneration.
• Terrain level (high/low ground).
• Air shots (there is a small chance to miss the target).
• Friendly fire.
• Firebat’s unique splash damage, both linear and radial.

We ran 100 simulations for both objective functions until
one group is completely annihilated, calling GHOST at each
StarCraft unit time. Potentially, the two groups can kill each
other, leading to a draw. At the end of the simulation we
compute GHOST’s win rate, the average number of living
units and the average HP of those units. For these experiments,
we first fixed the x satisfaction timeout and y optimization
timeout parameters respectively to 1,000 µs and 3,000 µs, and
we ran a new series of experiments with parameters x = 2, 000
and y = 5, 000. In [12], [13], Churchill et al. propose an
Alpha-Beta search with a timeout of 5 ms (5,000 µs). This
is why we have chosen to set the optimization timeout to
3,000 µs and 5,000 µs to be able to compare our results with
the same timeout and with a shorter one. Although, a direct
comparison is not possible since their goal is to guide the
action selection and not only to decide the target selection. For
this problem, we do not need any particular post-processing
optimization.

Table II4 shows that, if we allow 5 ms to GHOST to do
computations, the Max Damage objective (shooting with the
simple lowest HP ratio strategy exposed above) wins 99%
of the time against the mirror unit group (and 98% within
3 ms). The Max Kill objective seems a bit less efficient with
a win rate of 96% within 5 ms (94% within 3 ms). One
explanation is that Max Kill may not be a heuristic as good as
Max Damage when enemy units have their full HP. It would
be interesting to cross these two objectives to see if it leads
to better results.

For both objectives, we see that GHOST victories are
undeniable, with in average 2.75 remaining units after the
simulation, whereas the rare losses are tight, with just one
living enemy unit at the end of the combat. The average of
total remaining HP is also very clearly in favor of GHOST.

The enemy target selection heuristics actually leads to a list
of local optimums for each enemy unit independently, without
considering the global situation, i.e., choices taken for partners.
At the opposite, GHOST allows to look at the big picture and
search for a global optimum instead of a compilation of local
ones. Results show this clearly make the difference.

4All target experiment results and the simulator can be found at
github.com/richoux/GHOST paper/tree/master/xp/target

https://github.com/richoux/GHOST_paper/tree/master/xp/target

TCIAIG VOL. X, NO. Y, MONTH YEAR 6

TABLE II
AVERAGE RESULTS OVER 100 SIMULATIONS FOR BOTH OBJECTIVE FUNCTIONS. THE FIRST TABLE SHOWS EXPERIMENTS WHERE CALLS TO GHOST

LASTS FOR 3 MS, AND THE SECOND TABLE CALLS LASTING FOR 5 MS

GHOST Victory Opponent Victory

Objective Wins Draws Loses # Avg. living units Avg. HP # Avg. living units Avg. HP
3

m
s Max Damage 98 1 1 2.8 237.9 1.0 12.0

Max Kill 94 5 1 3.0 250.8 1.0 3.0

5
m

s Max Damage 99 1 0 2.6 231.9 0.0 0.0
Max Kill 96 4 0 2.6 233.6 0.0 0.0

C. Future work

To go further, we could implement additional objective
functions for the target selection problem, like minimizing
damage waste, i.e., to try to be as close as 0 HP while killing
an enemy unit, or in another words trying to avoid to attack
with a 20 damage weapon a unit with only 5 HP left. Even
if GHOST is a mono-objective framework, we could craft
new objectives by mixing already encoded ones, by simply
applying a priority heuristics, like “maximize kills first, and
consider maximizing damage as a tiebreaker”.

The current implementation only deals with Terran ground
units for the target selection problem. Extending it to all
StarCraft units would be easy. Finally, improving the current
simulator or using SparCraft [15] would make our experiments
more accurate.

IV. TACTICS PROBLEM: WALL-IN

Up to our knowledge, tactics problems have not been inten-
sively investigated for StarCraft. The exceptions are studies
dealing with the wall-in problem like Certicky [16] and the
wall-in solver by Richoux et al. [7]. As we already said, the
latter provides the basis for the present work.

A. Problem statement and model

A classic tactic to defend a base in RTS games is to make a
wall, i.e., construct buildings side by side in order to close or
to narrow the base entrance. Closing a base gives the player
extra time to prepare a defense, or helps him to hide some
pieces of information about his current strategy. Narrowing an
entrance creates a bottleneck, which is easier to defend in case
of invasion. In this section, we focus only on walls constructed
by buildings, discarding small narrow passages that can be
closed by small units like workers.

We define two properties of buildings: their build size, and
their real size. The build size is a pair (w, h) of build tiles.
In order to create such a building, we need a rectangle of
buildable tiles in the map (w build tiles for the width and h
build tiles for the height). The real size is a pair (wp, hp), such
that wp ≤ 32×w and hp ≤ 32×h, representing the actual size
of the building in pixels once it is constructed in the game,
where 32 is the size in pixels of a build tile in StarCraft. The
real size of a building can then be smaller than its build size.
This is actually always the case in StarCraft.

This means that two buildings constructed side by side are
still separated by a gap which may be big enough to let small
units go through. In this paper, we will call significant gap a

gap that allows Zerglings, the smallest unit in StarCraft with
16× 16 pixels, to cross a wall.

The wall-in problem has been first modeled in CSP by
Certicky in [16]. Then, Richoux et al. proposed a different
model, always in CSP, in [7]. The work published in the latter
has been GHOST foundation. One can see GHOST has a
deep extension and generalization of the solver used in [7].

Fig. 2. Constraint are: Overlap (upper-left), Buildable (upper-right), NoHoles
(bottom-left) and StartingTargetTile (bottom-right). Dark grey tiles represent
unwalkable and unbuildable tiles. Light grey tiles are walkable but unbuildable
tiles

For GHOST, the model of the wall-in problem is identical
to the one in [7]:

CSP model for the Wall-in problem:
Variables: Buildings of the player race.
Domain: Possible positions around the chokepoint.
Constraints: Overlap, Buildable, NoHoles and StartingTarget-
Tile.

Constraints of our model are illustrated in Figure 2. They
are defined as follows:

• Overlap: buildings do not overlap each others.
• Buildable: buildings do not overlap unbuildable tiles.
• NoHoles: no holes of the size of a build tile (or greater)

in the wall.
• StartingTargetTile: there are exactly one building con-

TCIAIG VOL. X, NO. Y, MONTH YEAR 7

structed on a given starting tile s, and one building (it
can be the same one) on a given target tile t.

Actually, Overlap, Buildable and NoHoles are sufficient to
make a wall. We added the StartingTargetTile constraint to
help the solver to find how to surround a chokepoint.

B. GHOST implementation and results

Like the target selection problem, we focus on the Terran
race for our experiments. The wall-in problem offers many
interesting optimization opportunities. Therefore, we have
implemented three different objective functions, aiming to
minimize:

• Building: the number of buildings in the wall,
• Gap: the number of significant gaps in the wall,
• TechTree: the required technology level in the game. In

games like StarCraft, some buildings are unlocked after
developing specific technologies. Therefore, it is interest-
ing to build walls with buildings of low technology.

To evaluate the technology level of a wall, we simply take
the depth in the technology tree of the most technological
building composing the wall. Thus, a Command Center has a
depth 0, a Barracks a depth 1, a Factory a depth 2, and so on.

This time, the satisfaction post-processing is important for
these three objective functions, and the optimization post-
processing really helps to improve the Gap and the TechTree
objectives.

The role of the satisfaction post-processing is to “clean” the
proposed wall, i.e., to remove all unnecessary buildings in the
valid solution, such that the resulting wall still satisfies the
four constraints of the model.

The optimization post-processing used with the Gap and
TechTree objectives tries to swap each building of the pro-
posed wall with another building from the set of variables
V , of the same size and not already used in the wall. This
simple permutation can drastically decrease the number of
significant gaps between buildings and the technology level
required. Satisfaction runs in Table III are GHOST runs

TABLE III
RESULTS OVER 48 CHOKEPOINTS EXTRACTED FROM 7 STARCRAFT MAPS.
RESULTS ARE THE AVERAGE OF 100 RUNS FOR EACH CHOKEPOINT. EACH

CALLS OF GHOST LASTS FOR 150 MS

Objective Satisfaction Run Optimization Run % Solved (Opti)

Building 4.05 2.56 98.04%
Gap 1.32 0.03 97.50%
TechTree 1.99 1.35 97.54%

without any objective functions and with a satisfaction timeout
of 160,000 µs, like in [7] with the difference that in Richoux
et al.’s paper, they compiled 8 satisfaction runs of 20,000 µs
(20 ms) each to have great chances to find a valid solution. We
measure their average number of buildings, significant gaps
and technology level in order to match them with optimization
runs. Always following the experiment methodology of [7],
optimization runs are slightly disfavored since their global
timeout is 150,000 µs, thus 10,000 µs (10 ms) shorter than
satisfaction runs. For optimization runs, x and y parameters

where fixed to 20,000 and 150,000 respectively. We can see
in Table III5 that optimization runs lead to real improvements
compared to satisfaction runs. This is particularly true with the
Gap objective, where significant gaps are almost completely
eliminated: 4,680 of 4,800 walls have been found (97.50%),
and 4,527 of them are perfect walls (i.e., without any signifi-
cant gaps). In other words, 96.73% of walls found by GHOST
are perfect.

Since GHOST code has been improved compared to the
solver in [7], we obtained slightly better results. The percent-
age of problems solved goes from 95-96% to 97-98%; walls
decided with the Building objective were composed of 2.65
buildings against 2.56 now; the number of significant gaps
goes from 0.05 to 0.03; and the technology level from 1.56 to
1.35. Table IV shows the percentage of walls found in each

TABLE IV
PERCENTAGE OF SOLUTIONS FOUND FOR EACH MAP

Map Name Solved

Python 100
Heartbreak Ridge 100
Circuit Breaker 99
Benzene 99
Aztec 97
Andromeda 96
Fortress 90

of the seven maps from where chokepoints were extracted.
These numbers correspond to pure satisfaction runs, since they
do not differ significantly from optimization runs. We can see
that GHOST has more difficulties to find a wall for Fortress
chokepoints. Actually, it is failing from time to time on the
same chokepoint, where a valid solution can only be achieved
by using two 3× 2-sized buildings.

TABLE V
AVERAGE TIME OVER 20 RUNS TO FIND A SOLUTION

Chokepoint
width (pixels)

Buildings
needed

GHOST
Avg. time (ms)

Clingo
Avg. time (ms)

65 2 46.8 362.8
250 2 33.5 408.8

We also performed a comparison between GHOST and the
state-of-the-art for the walling problem, in this case the work
presented by Certicky [16]. First, we limited the number of
possible buildings to be considered to the number of buildings
in Certicky’s work (2 Barracks and 4 Supply Depots) and
recorded the time to find a solution in two different cases:
a small chokepoint (width of 65 pixels) and a big chokepoint
(width of 250). In Table V6, we can see the average results
of both solvers. The times include the computation needed for
setting the solvers parameters, the time to solve the problem,
and the time to parse the solution (in the case of Certicky’s
solution, we need to make an external call to Clingo solver).
As we can see, GHOST is at least 7.8 times faster than Clingo

5All wall-in data and experiment results can be found at
github.com/richoux/GHOST paper/tree/master/xp/wallin

6Comparison experiments can be found at https://bitbucket.org/auriarte/
bwta2/src

https://github.com/richoux/GHOST_paper/tree/master/xp/wallin
https://bitbucket.org/auriarte/bwta2/src
https://bitbucket.org/auriarte/bwta2/src

TCIAIG VOL. X, NO. Y, MONTH YEAR 8

in our experiments. GHOST is faster in the wider chokepoint
because the smaller one is a ramp and there is an overhead of
computing the extremes of the ramp.

C. Future work

For the wall-in problem, we could add new objective func-
tions to widen possibilities. For example, trying to make a wall
by minimizing the cost, or the makespan. This last objective
is harder and related to the next section (it is somehow the
wall-in problem combined with the build order problem).

Most importantly, since the required runtime to correctly
optimize a wall is longer than a StarCraft frame duration, we
could implement GHOST in order to support computation
pauses and resumes. Actually, GHOST architecture has been
designed with this feature in mind. The satisfaction part
is executed in 20 ms, i.e., it can be executed within one
StarCraft frame in the fastest speed. Marking a pause after
each satisfaction loop and resume GHOST at the next frame
until the computation ends would not be difficult to do. This
is discussed more in detail in Section VII.

In addition to extend the current code to manage all Star-
Craft races, results in Table IV give us the feeling that our
wall-in model can be refined again to reach a higher percentage
of found solutions.

V. STRATEGY PROBLEM: THE BUILD ORDER

The reader can find an extensive literature about build
order planner and prediction for StarCraft. Churchill and Buro
propose in [3] a build order planner using a branch and
bound technique, Kuchem et al. analyze build order tools
for StarCraft II in [4], Cho et al. present in [17] a strategy
prediction and a build order adaptation system learning from
replays, and in [18] Synnaeve and Bessière show a Bayesian
model to predict the opponent build order.

A. Problem statement and model

A build order (BO) plan is a series of actions following
a specific timing, in order to achieve a goal. Such a goal
is a combination of buildings, units, upgrades and researches
produced. Usually, the objective for a player is to reach a fixed
goal the fastest possible way. However, alternatives can also
be considered, like reaching the goal without sacrificing the
economy, or focusing first on units in order to have an army
as soon as possible.

A BO plan can be intuitively modeled by a CSP as
a permutation problem, where a bijection maps the set of
variables to the domain. Changing the value of one variable
is then actually swapping its value with another variable.

All actions have a (potentially empty) dependency list, i.e.,
an action α has a list of actions that are required before starting
α. For instance, to start the Air Weapons Upgrade level 2, it
is required to have finished the Air Weapons Upgrade level
1. Notice that we can dive recursively into these dependency
lists. Thus, if someone aims to do Air Weapons Upgrade level
2 for Protoss, it requires Air Weapons Upgrade level 1, which
requires itself a Cybernetics Core, which requires a Gateway.

The CSP model we propose for the BO plan problem is the
following one:

CSP model for the Build Order Plan problem:
Variables: All actions we need to reach our goal.
Domain: Order of actions.
Constraints: Each dependency of an action α must occur
before α.

B. GHOST implementation and results

We have chosen to focus on Protoss to test GHOST on
the build order problem. The current implementation can deal
with any Protoss buildings, units, researches and upgrades.

For this problem, we have implemented one objective func-
tion only: minimizing the BO makespan. With this objective
function, we had not implemented a special satisfaction post-
processing, but we did for the optimization post-processing.
Imagine the case where the user asked, among others, to
produce n units of type U . Thus, GHOST will automatically
add, recursively, all dependencies of U into the variable set.
Suppose the unit type U is produced by the building of type B,
and the user eventually asked for m < n buildings of type B.
After having computed an optimized a BO, the optimization
post-processing will retake this solution and try to see if it
can shorten the makespan even more by constructing more
buildings of type B, to speed up the production of units of type
U . This post-processing optimization is significantly efficient
in cases where the user asks for a high number n of the same
unit U , and none or a low number m of B.

Unlike the target selection problem, this time we need
to integrate a simulator inside GHOST to emulate a game
(without combat) and be able to compute the makespan of
BOs. Thus, this simulator must emulate resource gathering,
unit production (including workers), supply capacity and
construction. Our simulator always tries to produce workers
until reaching saturation (24 workers per base), as well as
maintaining supply in order to never be “supply blocked”
(unable to produce a unit because we reached the supply
capacity limit).

In [3], Churchill and Buro give details about the simulator
they developed for their BO planner. We first used the same
settings, but after matching GHOST results against build order
from Korean pro-gamers, we realized that these settings were
a bit too advantageous for the simulator. Then we closely
analyzed some replays from Korean pro-gamers to refine our
simulator settings, listed below in frames:

• Time to go build something: 74 frames (96 in [3])
• Time to go back gathering minerals after building some-

thing: 60 (0 in [3])
• Time to go from the base to mineral patches to start

mining: 74 (0 in [3])
• Time for a worker to switch from mineral to gas: 74 (0

in [3])
• Mineral gathering rate: 0.045 mineral per worker per

frame (like in [3])
• Gas gathering rate: 0.077 gas per worker per frame (0.07

in [3])

TCIAIG VOL. X, NO. Y, MONTH YEAR 9

TABLE VI
OUR SIMULATOR EXECUTION MATCHED AGAINST THE PRO-GAMER BISU DURING THE FIRST 1900 FRAMES (i.e., 80 SECONDS)

Simulator in GHOST Bisu

Action Frames Mineral Supply (Used/Capacity) Mineral Supply (Used/Capacity)

Simulator starts a probe 298 40.8 5/9 40 5/9
Simulator starts a probe 656 19.7 7/9 20 7/9
Simulator starts a probe 955 46.5 8/9 50 8/9
Simulator starts a pylon 1,119 - - - -
Bisu starts a pylon 1,164 - - - -
Simulator starts a probe 1,328 1.2 9/9 12 9/9
Simulator starts a probe 1,627 60.0 10/17 132 9/17
Bisu starts a gateway 1,731 - - - -
Simulator starts a gateway 1,866 - - - -
Simulator starts a probe 1,866 1.8 11/17 78 9/17

To be sure these parameters make our simulator realistic, we
matched its execution against the first 1900 frames of games
(i.e., 80 seconds) played by Korean pro-gamers. Table VI gives
an example of our simulator matched against the Protoss Ko-
rean pro-gamer “Bisu”. Gas is not revealed since it remained 0
for both “Bisu” and the simulator during the first 1900 frames.
Each time the simulator started to produce a probe, i.e., a
worker, we write down the simulator and “Bisu” mineral stock
and supply situation (used supply over supply capacity). One
can see that these two early games are very similar, with a
slight advantage to the simulator since its probe production is
nearly perfect. For Table VII7, GHOST has been run 10 times
on each build order. We run experiments on two sets of build
orders: those extracted from replays by Gabriel Synnaeve [19]
and refined by Glen Robertson8, and those extracted from top
Korean pro-gamers.

In total, the first set is composed of 3,647 build orders:
768 Protoss versus Protoss, 2,043 Protoss versus Terran and
836 Protoss versus Zerg. Table VII shows that GHOST
outperforms human BOs by far, with a mean of 544 frames
of gain considering 10,000 frames BOs (about 7 minutes) and
394 frames of gain considering 7,800 frames BOs (about 5
minutes), all match-ups taken together.

We have also analyzed some replays played by top Korean
pro-gamers: Protoss players “Bisu”, “BeSt”, “Violet” and
“Cure”; Zerg players “Jaedong” and “sAviOr”; and Terran
player “Flash”. We have only downloaded 8 of them, giving
us a set of 8 BOs to give to GHOST.

Results against these pro-gamers are shown at the very last
line of Table VII. We can see that GHOST obtains better
BOs than Protoss Korean pro-gamers listed above, with a
gain of 689 frames for 10,000 frames BOs and 306 frames
for 7,800 frames BOs. We have to lower the first result by
emphasizing that pro-gamers are often already engaged in a
fight before 10,000 frames and/or they are applying outside-
the-book strategies, and thus minimizing the BO makespan
may not be their first priority anymore. To a lesser extent, this
is also true with 7,800 frames BOs.

Computation time is only 20 ms for satisfaction runs and
30 ms for the (global) optimization run. This means that

7All build order data, experiment results and the simulator can be found at
github.com/richoux/GHOST paper/tree/master/xp/build order

8scidrive.uoa.auckland.ac.nz/gameai/scdata/files.txt

GHOST can compute a highly optimized BO within only
one StarCraft frame at the fastest speed. In [3], Churchill and
Buro’s branch and bound method is computing 90% of the
time BOs with the same makespan as pro-gamers in about
3.735 seconds (for build orders with a makespan up to 249s,
i.e., 5928 frames), giving thus a CPU time / makespan ratio
of 1.5%. Considering GHOST is computing in average BOs
with a makespan of 9250 frames within 30 ms. In the fastest
mode, 9250 frames corresponds to about 388s; leading to a
CPU time / makespan ratio of 0.007%.

Planning a BO is easier than a wall-in for GHOST because
a BO plan can be modeled in CSP by a permutation problem,
which drastically decrease the combinatorial complexity of the
problem. Also, the satisfaction part for the target selection and
the build order problems are not difficult to compute, since
constraints modeling these problems are trivial. This is not
the case for the wall-in problem, where even getting a non-
optimized valid solution is hard.

C. Future work

As for all other problems, we could implement another
objective function for the build order problem. For instance,
it would be natural to propose an objective function trying to
first minimizing the makespan of all army units asked by the
user, and then to minimize the makespan of remaining actions
(buildings, researches, upgrades). This would allow the user
to secure first his base with an army.

VI. MATCHING STATE-OF-THE-ART CONSTRAINT SOLVERS

One of GHOST’s main goals is to provide a user-friendly
and flexible interface to make the combinatorial problem
modeling easier for non-specialists, using GHOST’s inner
solver as a blackbox to solve these models. A previous study
has shown GHOST to be both robust and flexible [20], robust
in the sense that GHOST inner solver shows good behavior
to solve problems that it is not designed for, and flexible since
proposing different models to the same problem only requires
shallow modifications.

A. State-of-the-art constraint solvers

In this section, we compare GHOST inner solver perfor-
mances with the state-of-the-art constraint solvers, namely

https://github.com/richoux/GHOST_paper/tree/master/xp/build_order
http://scidrive.uoa.auckland.ac.nz/gameai/scdata/files.txt

TCIAIG VOL. X, NO. Y, MONTH YEAR 10

TABLE VII
AVERAGE MAKESPAN OF HUMANS AND GHOST BOS IN FRAMES OVER 3647 GAMES. EACH CALLS OF GHOST LASTS FOR 30MS

Games till 10,000 frames

Match-up Humans GHOST % Solved Gain

All 9,794 9,250 94.4 544
PvP 9,727 9,078 95.0 649
PvT 9,861 9,378 93.9 483
PvZ 9,692 9,097 95.0 595

All pro 9,605 8,916 96.3 689

Games till 7,800 frames

Match-up Humans GHOST % Solved Gain

All 7,726 7,332 98.8 394
PvP 7,630 7,249 99.3 381
PvT 7,800 7,564 98.3 236
PvZ 7,626 6,841 99.7 785

All pro 7,485 7,179 100 306

Opturion CPX9 and Gecode [21]. We chose these two solvers
for two reasons: first, both are able to parse MiniZinc code, a
common language to model constraint optimization problems.
Therefore, we only need to model a problem once and give this
model to different solvers to measure their performances. Sec-
ond, Opturion CPX and Gecode are well known state-of-the-
art solvers, participation to the annual MiniZinc Challenges.
Gecode won all gold medals in all categories (fixed, free
and parallel) at the MiniZinc Challenges from 2008 to 2012.
Starting from 2013, MiniZinc Challenges are composed of four
categories: fixed, free, parallel and open10. Opturion CPX won
two gold medals (fixed and free categories) and two bronze
medals (parallel and open categories) in 2013, the four silver
medals in 2014 and two gold medals (fixed and free), one
silver medal (parallel) and one bronze medal (open) in 2015.
Therefore, Gecode was the dominant constraint solver until
2012, and from 2013 Opturion CPX becomes and remains the
current leading constraint solver.

However, these two solvers implement a complete algo-
rithm, i.e., an algorithm that explores the whole search space
to find (and proof) the optimal solution. GHOST inner solver
implements a local search meta-heuristics, i.e., an incomplete
algorithm. It is unable to prove the optimality of a solution,
but in practice these algorithms are very efficient to quickly
find an optimal or near-optimal solution. To match GHOST
inner solver to other local search meta-heuristics, we also
run experiments with Oscar/CBLS MinZinc interface [22]. We
chose this solver again for two reasons: first, it is one of the
rare solver programs that implements a meta-heuristics able
to parse MiniZinc code. Other frameworks such as ORtools
or EasyLocal++ can also parse MiniZinc code, but they
are frameworks like GHOST, i.e., they do not provide any
executable, but a library to implement your own executable
upon their solver. Second, Oscar/CBLS is a very recent solver
(last release from late 2015), and the only local search-based
algorithm listed on the MiniZinc software web page11.

Rather than matching GHOST results with state-of-the-art
solvers on the three problems presented above, we chose to
compare these algorithms on a resources allocation problem.
The reason is simple: the target selection and build order prob-
lems require a simulator to recreate the game environment,
which is both complicated and time consuming for solvers
we don’t know so well, even for a simple simulator like the

9www.opturion.com
10See www.minizinc.org/challenge.html for further details
11www.minizinc.org/software.html

one used for target selection. The wall-in problem is actually
quite complex to model through MiniZinc, with a lot of data
related to the model variables (size of buildings, pixel gap
size on each side, etc). Performances depend a lot on the
quality of the MiniZinc model, where a good use of global
constraints is critical. We lack the expertise in both MiniZinc
and global constraints to assure to provide an efficient model
for the wall-in problem. A model that is not well-optimized
would have been a great disadvantage for other solvers. The
MiniZinc model we use for the resources allocation problem
is a slight modification of the simple-prod-planning
model provided by MiniZinc authors, therefore we are sure to
have a well optimized model for this problem.

B. Benchmark and experiments

Our resources allocation problem is the same as studied
in [20]: given an amount of minerals, gas and supply, what
units should we train to maximize the global damage per
second (DPS) on ground units. In other words, what is the
list of units you should train to maximize the sum of their
ground DPS if we give you fixed stocks of resources. This
is actually an instance of the multi-dimensional knapsack
problem with three dimensions (one per resource type). The
regular knapsack problem is well-known to be NP-complete,
and its multi-dimensional version is even harder: unlike the
original knapsack problem, there is no efficient polynomial-
time approximation scheme starting from two dimensions
(unless P=NP) [23].

To compare solvers on significant problem instances, we
chose to optimize ground DPS for Zerg, Protoss and Terran
factions with 20,000 mineral units, 14,000 gas units and 380
supply units. Although these values are unrealistic within a
StarCraft game, they are large enough to challenge constraint
solvers. Indeed, it is harder to match solvers if all of them
return a solution within a couple of milliseconds.

Results matching GHOST inner solver with Opturion CPX
and Gecode are compiled in Table VIII12. Since Opturion CPX
and Gecode implement complete, deterministic algorithms,
running them once on each problem instance is sufficient.
That means runs on the same input are identical regarding
solution quality and runtimes. For GHOST, we set the runtime
to the lowest time (empirically found) where more than 50%
of solutions are the optimal solution. We let Opturion CPX and

12All experiment results can be found at
github.com/richoux/GHOST paper/tree/master/xp/other solvers/resource
and github.com/richoux/GHOST paper/tree/master/xp/resource

http://www.opturion.com
http://www.minizinc.org/challenge.html
http://www.minizinc.org/software.html
https://github.com/richoux/GHOST_paper/tree/master/xp/other_solvers/resource
https://github.com/richoux/GHOST_paper/tree/master/xp/resource

TCIAIG VOL. X, NO. Y, MONTH YEAR 11

TABLE VIII
SOLVERS’ COMPARISON ON THE RESOURCES ALLOCATION PROBLEM

Opturion CPX Gecode GHOST (100 runs) Oscar/CBLS (10 runs)

Optimal DPS Runtime Runtime % Opt. Found Mean DPS Runtime Mean DPS Best DPS Mean Runtime

Zerg 11,400.00 200 ms 99,580 ms 59 11,387.70 80 ms 11,400.00 11,400.00 562 ms
Protoss 4,916.38 1,620 ms - 54 4,907.70 1,300 ms 3,445.21 4,480.00 1,200 ms
Terran 6,632.73 3 h 19 min - 53 6,619.30 130 ms 3,035.73 5,767.55 1,390 ms

Gecode solvers 6 hours for each problem instance to output a
solution.

Results matching GHOST inner solver with Oscar/CBLS
can be found in Table VIII. Notice that, like GHOST, Os-
car/CBLS implements a stochastic algorithm. As such, we
must run the same problem multiple times to compute a fair
mean of the runtime and solution quality. Since Oscar/CBLS
does not let us define a runtime timeout, we manually stopped
the execution after one minute and then we collected, for each
run, the runtime when it reached its highest DPS. This is
the reason why we only have 10 Oscar/CBLS runs on each
problem instance, against 100 runs for GHOST.

C. Results analysis

Table VIII clearly shows that GHOST inner solver outper-
form the state-of-the-art constraint solvers Opturion CPX and
Gecode on our resources allocation problem instances. Gecode
was only able to output a solution for the Zerg instance. For
both Protoss and Terran instances, no solutions were found
after 6 hours of computation. On the Zerg instance, Gecode
found the optimal solution in 99.58 seconds, where GHOST
found 59% of the time the optimal solution in 80 milliseconds.
In average, GHOST finds a DPS of 11,387.7 where the
optimal is 11,400. Thus, the average output quality from
GHOST within 80 ms corresponds to 99.89% the optimal
solution quality. Opturion CPX finds the optimal solution in
200 ms, i.e., 2.5 times longer than GHOST needs to reach
the optimal solution at least 50% of the time.

On the Protoss instance, GHOST found 54% of the time the
optimal solution in 1.3 s with an average DPS of 4,907.7 where
the optimal is 4,916.38, i.e., 99.82% the optimal solution
quality. Opturion CPX found the optimal solution in 1.62 s,
thus slightly more time than GHOST needs to reach the
optimal solution at least 50% of the time.

The real difference between GHOST and Opturion CPX
occurs on the Terran instance. GHOST finds 53% of the
time the optimal solution in 130 ms, with an average DPS of
6,619.3 where the optimal is 6,632.73, i.e., 99.80% the optimal
solution quality. Opturion CPX finds the optimal solution in
3 hours and 19 minutes!

Runtimes obtained on these three instances can be explained
as follow: in StarCraft, 6 different Zerg and Protoss units can
hit ground units, against 9 Terran units (without taking into
account buildings such as Sunken Colony or Photon Cannon).
This difference is sufficient to make the Terran instance search
space considerably wider than the other two (about 1.57×1020
configurations for the Terran instance against 1.55× 1013 and
1.33× 1012 respectively for the Zerg and Protoss instances).

Although the Protoss instance has a smaller search space
than the Zerg instance, all algorithms need more time to find
a solution. This is because Zerg units’ properties make the
Zergling unit clearly more challenging to maximize the ground
DPS, having by far the best DPS / cost ratio among Zerg units.
Therefore, the strategy to maximize the Zerg ground DPS is
trivial: just train as many Zerglings as resources allow. This
is not the case with the Protoss instance where a composition
of different units (for our instance, a mix of Zealots and Dark
Templars) is required to reach the optimal solution. Notice that
GHOST inner solver is faster to find a solution for the Terran
instance rather than the Protoss instance, because Terrans have
also a trivial optimal strategy: just produce as many Firebats
as resources allow. However, for complete solvers, the search
space remains too large to explore in order to prove the
solution’s optimality.

Table VIII shows that GHOST inner solver also outper-
forms the local search meta-heuristics implemented in Os-
car/CBLS. Except for the Zerg instance, the best solution
found by Oscar/CBLS was very far from the optimal solution,
and finds in average poor-quality solutions usually within
much longer time than GHOST to find a near-optimal so-
lution. It requires about 562 ms to Oscar/CBLS to find the
optimal solution of the Zerg instance, while GHOST finds
the optimal or a near-optimal solution within 80 ms.

For the Protoss instance, GHOST needs 1.3 s to find
the optimal (DPS = 4,916.38) or a near-optimal solution; in
average, Oscar/CBLS requires 1.2 s to find a solution with a
mean DPS of 3,445.21, that is, 70.08% of the optimal solution
quality (against 99.82% for GHOST). The best solution found
by Oscar/CBLS has a DPS of 4,480 (91.12% the optimal)
while GHOST reaches 54% of the time the optimal solution.

Finally, for the Terran instance, GHOST computes the
optimal (DPS = 6,632.73) or a near-optimal solution within
130 ms, while Oscar/CBLS takes 1.39 s in average to find a
solution with a mean DPS of 3,035.73. This represents 45.77%
of the optimal solution quality, against 99.80% for GHOST.
The best solution found by Oscar/CBLS has a DPS of 5,767.55
(86.96% the optimal) when GHOST outputs 53% of the time
the optimal solution.

We should also emphasize that Oscar/CBLS uses many
cores to compute a solution13, whereas GHOST inner solver
remains sequential. Besides this difference, results compiled in
Table VIII show that GHOST outperforms Oscar/CBLS both
in terms of quality outputs and runtimes.

13Experiments have been conducted on an Intel i7 quad-core CPU, with
4GB of memory, under Ubuntu 14.04 64-bit.

TCIAIG VOL. X, NO. Y, MONTH YEAR 12

VII. DISCUSSION AND CONCLUSION

In this paper, we introduced GHOST, a combinatorial
optimization framework to solve any (decidable) problems
encoded by a constraint satisfaction/optimization problem. We
presented three different RTS problems belonging to a specific
level of abstraction, and proposed a CSP/COP model for
each. Experiments applying GHOST on these models shown
very good results computed within some tens of milliseconds,
without any modification or optimization of the solver source
code. Results obtained are often better than the ones we can
find in the current literature.

One claim written in Section II is now clear: looking for
the absolute optimal solution may not be the best strategy for
RTS games; this is confirmed by complete algorithms runtimes
from Section VI. Fast meta-heuristics can output an “optimal
enough” solution in some tens of milliseconds, and if no good
enough solution has been found, the user can always re-run
the solver on the next frame.

Some improvements we have in mind concern the imple-
mentation of a pause/resume system, that will allow GHOST
to start a long computation and to hash it into small pieces fit-
ting within one frame. GHOST architecture has been designed
to make such an implementation easy to do, in particular
thanks to the decoupling satisfaction loop - optimization loop.
Another improvement would be to let the solver check how
many cores are available in the machine running it, and use all
of them to speed up the search. This can also be done easily
since Adaptive Search is known to be very efficient with a
straightforward parallel scheme (see Caniou et al. [9]). Indeed,
this algorithm has been parallelized on a super-computer and
it shows linear speed-ups over 8,192 cores on some problems
(and fairly good speed-ups on others), which are impressive
parallel performances.

GHOST has also been designed following the famous
Object Oriented Programming “open-close principle”, to let
the door open for extensions without the need to modify
the already written classes. It is easy to implement and to
include new problems in GHOST, and the authors highly
encourage contributors to propose implementations of new
problems to integrate into the library. We would like GHOST
to be broadly used among both amateur and professional RTS
AI developers. A proprietary C# version of GHOST has been
transferred in favor of the game studio Insane Unity14 for
their MMORTS Win That War!15 currently in alpha version.
GHOST is used both for developing an adversary AI player,
but also for making a taking-the-reins AI when the player is
not connected, since this MMORTS is a persistent world.

Finally, this work leads us to take a global view on
CSP/COP, and to consider the following: even if a huge
number of combinatorial optimization problems can be mod-
eled with CSP/COP, this framework is not well adapted
to deal with uncertainty or incomplete information. This
is penalizing for many RTS-related problems, where most
interesting challenges come from the fact that information
is incomplete. Some variations of Constraint Programming

14www.insaneunity.com
15www.winthatwar.com

propose to take into account uncertainty through formalisms
like soft constraints or fuzzy constraints. However, up to our
knowledge, none of these formalisms favor the design of
efficient solvers. Thus, far beyond the scope of the present
work, we would like to investigate on a new CSP formalism
that could manage uncertainty efficiently.

REFERENCES

[1] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, “A survey of real-time strategy game AI research and
competition in StarCraft,” Transactions on Computational Intelligence
and AI in Games (TCIAIG), vol. 5, no. 4, pp. 293–311, 2013.

[2] G. Robertson and I. Watson, “A review of real-time strategy game AI,”
AI Magazine, 2014.

[3] D. Churchill and M. Buro, “Build order optimization in starcraft,” in
AIIDE. AAAI Press, 2011, pp. 14–19.

[4] M. Kuchem, M. Preuss, and G. Rudolph, “Multi-objective assessment of
pre-optimized build orders exemplified for starcraft 2,” in CIG. IEEE,
2013.

[5] R. Lara-Cabrera, C. Cotta, and A. J. Fernández-Leiva, “A self-adaptive
evolutionary approach to the evolution of aesthetic maps for a RTS
game,” in World Congress on Computational Intelligence (WCCI).
IEEE, 2014.

[6] G. Verfaillie and N. Jussien, “Constraint solving in uncertain and
dynamic environments: A survey,” Constraints, vol. 10, no. 3, pp. 253–
281, 2005.

[7] F. Richoux, A. Uriarte, and S. Ontañón, “Walling in strategy games via
constraint optimization,” in AIIDE. AAAI Press, 2014.

[8] P. Codognet and D. Diaz, “Yet another local search method for constraint
solving,” in SAGA. Springer Verlag, 2001, pp. 73–90.

[9] Y. Caniou, P. Codognet, F. Richoux, D. Diaz, and S. Abreu, “Large-
scale parallelism for constraint-based local search: The costas array case
study,” Constraints, vol. 19, no. 4, pp. 1–27, 2014.

[10] G. Synnaeve and P. Bessière, “A bayesian model for RTS units control
applied to starcraft,” in CIG. IEEE, 2011.

[11] A. Uriarte and S. Ontañón, “Kiting in RTS games using influence maps,”
in AIIDE. AAAI Press, 2012.

[12] D. Churchill, A. Saffidine, and M. Buro, “Fast heuristic search for RTS
game combat scenarios,” in AIIDE. AAAI Press, 2012.

[13] D. Churchill and M. Buro, “Incorporating search algorithms into RTS
game agents,” in AIIDE Workshop on Artificial Intelligence in Adver-
sarial Real-Time Games. AAAI Press, 2012.

[14] T. Furtak and M. Buro, “On the complexity of two-player attrition games
played on graphs,” in AIIDE. AAAI Press, 2010.

[15] D. Churchill, “Sparcraft: open source starcraft combat simulation,”
2013. [Online]. Available: https://code.google.com/p/sparcraft/

[16] M. Čertický, “Implementing a wall-in building placement in starcraft
with declarative programming,” arXiv, 2013.

[17] H.-C. Cho, K.-J. Kim, and S.-B. Cho, “Replay-based strategy prediction
and build order adaptation for starcraft AI bots,” in CIG. IEEE, 2013.

[18] G. Synnaeve and P. Bessière, “A bayesian model for opening prediction
in rts games with application to starcraft,” in CIG. IEEE, 2011.

[19] G. Synnaeve and P. Bessière, “A dataset for StarCraft AI & an example
of armies clustering,” in AIIDE. AAAI Press, 2012.

[20] J. Fradin and F. Richoux, “Robustness and flexibility of GHOST,” in
AIIDE Workshop on Artificial Intelligence in Adversarial Real-Time
Games. AAAI Press, 2015, pp. 9–14.

[21] C. Schulte and P. J. Stuckey, “Efficient constraint propagation engines,”
Transactions on Programming Languages and Systems, vol. 31, no. 1,
pp. 2:1–2:43, 2008.

[22] G. Björdal, J.-N. Monette, P. Flener, and J. Pearson, “A constraint-based
local search backend for minizinc,” Constraints, vol. 20, no. 3, pp. 325–
345, 2015.

[23] A. Kulik and H. Shachnai, “There is no eptas for two-dimensional
knapsack,” Information Processing Letters, vol. 110, no. 16, pp. 707–
710, 2010.

http://www.insaneunity.com
http://www.winthatwar.com
https://code.google.com/p/sparcraft/

	Introduction
	RTS problem families
	StarCraft: Brood War
	Goals and summary

	GHOST: A General meta-Heuristic Optimization Solving Tool
	A brief introduction to CSP/ COP
	GHOST architecture

	Reactive control problem: target selection
	Problem statement and model
	GHOST implementation and results
	Future work

	Tactics problem: Wall-in
	Problem statement and model
	GHOST implementation and results
	Future work

	Strategy problem: The build order
	Problem statement and model
	GHOST implementation and results
	Future work

	Matching state-of-the-art constraint solvers
	State-of-the-art constraint solvers
	Benchmark and experiments
	Results analysis

	Discussion and conclusion
	References

