
Terrain Analysis in StarCraft 1 and 2 as
Combinatorial Optimization

Florian Richoux
AIST

Tokyo, Japan
florian@richoux.fr

Abstract—Terrain analysis in Real-Time Strategy games is a
necessary step to allow spacial reasoning. The goal of terrain
analysis is to gather and process data about the map topology
and properties to have a qualitative spatial representation. On
StarCraft games, all previous works on terrain analysis propose a
crisp analysis based on connected component detection, Voronoi
diagram computation and pruning, and region merging. Those
methods have been implemented as game-specific libraries, and
they can only offer the same kind of analysis for all maps and all
users. In this paper, we propose a way to consider terrain analysis
as a combinatorial optimization problem. Our method allows dif-
ferent kinds of analysis by changing constraints or the objective
function in the problem model. We also present a library, TAUNT,
implementing our method and able to handle both StarCraft 1
and StarCraft 2 maps. This makes our library a universal tool
for StarCraft bots with different spatial representation needs. We
believe our library unlocks the possibility to have real adaptive
AIs playing StarCraft, and can be the starting point of a new
wave of bots.

Index Terms—Terrain Analysis, Real-Time Strategy Game,
StarCraft, Combinatorial Optimization, Constraint Program-
ming

I. INTRODUCTION

From the top-left corner of the map, 2 minutes 38 seconds
after the beginning of the game, the blue player sends two
stalkers, a basic fast-moving unit of the Protoss faction,
towards the red player’s base. Red has the same number of
stalkers to defend himself, but Blue’s micromanagement is so
efficient that the battle is completely at Blue’s advantage.

Red is defending well, and he managed to produce immor-
tals, a strong unit known to be a hard counter against an army
composed of stalkers. However, Blue is continuously, tirelessly
sending waves of stalkers against Red’s army, and combined
with an excellent unit control, has overwhelmed the opponent
that has no other choice than to resign.

Despite the headlong, stubborn strategy of Blue, who did
not scout the opponent and was then rolling this strategy
out blindly, and despite the good strategical decisions from
Red, Blue’s domination was indisputable. This was the third
game between the professional player MaNa, in red, versus
Alphastar, in blue, on December 19, 2018. In fact, this
describes most of the games played by Alphastar that day
and some months later on the StarCraft 2 ladder: Alphastar
starts and finishes a game with the same strategy rolled out at
the perfection, without any significant adaptations regarding
its opponent’s strategy.

But Alphastar is not an exception in StarCraft AI: the large
majority of StarCraft 1 and StarCraft 2 bots have scripted
or unadaptive behaviors [1]. Despite being potentially very
effective, those bots are somehow getting around the difficulty,
and thus the interest, of RTS games used as AI benchmarks,
by exploiting those benchmarks’ flaws and imperfections.

Several directions are possible for making StarCraft bots
with some real capacities of adaptability. One way is to design
a non-scripted bot, able to play the three races on StarCraft 1
and StarCraft 2 with the same high-level decision-making
mechanisms.

However, to enable homogeneous spatial reasoning over
both StarCraft 1 and StarCraft 2, bots need a terrain analysis
tool working the same way on these two games. Ideally, such
a tool should be flexible enough to fit different needs in terms
of terrain analysis, to be exploited at the best by different bots
applying different methods.

This is the starting point of this work. In this paper, we
propose a flexible method to tackle terrain analysis in both
StarCraft games as a combinatorial optimization problem, that
can be expressed by different models supporting different
analyses. After presenting our method and our combinatorial
optimization problem models, we show experimental results of
the C++ library we developed, tested upon diverse StarCraft 1
and StarCraft 2 maps.

II. BACKGROUND

A. RTS games and StarCraft

A Real-Time Strategy game, or RTS game, is a genre of
video game where players must gather resources to develop
an army, and must destroy the army or the buildings of
other players to win. Unlike classic strategic board games
such as Chess, players are not making moves alternatively,
by simultaneously in real-time. The most popular way to play
this kind of games involves two players in a 1 vs 1 game.

This study tackles terrain analysis on the two widely popular
RTS games of the StarCraft series: the first one “StarCraft”
together with its extension “StarCraft: Brood War”, denoted
in this paper as StarCraft 1, and the second one “StarCraft II”
under its last version named “Legacy of the Void”, denoted
here as StarCraft 2. To explain something concerning both
games, we will simply write StarCraft. Both games have a
similar gameplay with some different features, such as unit
characteristics and some map properties.



In StarCraft, players must gather two types of resources
(minerals and gas) in order to construct buildings. Those
buildings are required to produce units, to improve some unit
characteristics or even to add new ones. All of these have a
given cost to be paid in resources.

Games are played on a rectangular map, discretized into
tiles called buildable tiles, upon which buildings can be
constructed, and smaller tiles called walkable tiles, which are
discrete in StarCraft 1 but continuous values in StarCraft 2
(so not tiles per se), on which units can walk. Indeed, some
pixels on a map can be walkable without being buildable. This
mostly happens at the edge of some natural borders such as
cliffs or water.

Like most RTS games, the map is covered by a “fog of
war” preventing players seeing enemy units that are not next to
their own units. However, since each game on a given map will
always start with the same initial properties (except the starting
position of players), it is considered that the map topology and
properties, such as the position and quantity of each resource,
are known.

B. Terrain Analysis

A bot playing StarCraft must know the terrain topology and
the map properties to be able to do some spacial reasoning.
Spacial reasoning is necessary to make good decisions such as
where to expend for colonizing an unclaimed part of the map,
where to attack the opponent in priority, and where defense
must be reinforced.

Terrain analysis is gathering and processing data about the
map topology and properties to have a qualitative spatial rep-
resentation, required to make spatial reasoning. In StarCraft,
map topology is characterized among other things by the
terrain height (low, high and very high, to take StarCraft 1
terminology, and a rare fourth level in StarCraft 2) and the
nature of each tile paving the map (walkable and/or buildable).
Map properties include the height and width of the map, the
position and the quantity of resources, the possible starting
position of players, the presence, position and hit points of
destructible obstacles, etc.

One of the main jobs done by a terrain analysis is splitting
the map into regions, and spotting choke points that are easy
to defend and make evident region delimiters.

III. RELATED WORK

There are only a few relevant papers dealing with terrain
analysis in RTS games, and more specifically about StarCraft.
We can cite Perkins’ article in 2010 to be the first significant
work about terrain analysis for StarCraft 1 [2], describing the
Brood War Terrain Analysis library, or BWTA. In 2016, Uriarte
and Ontañón have improved Perkings’ work and propose
BWTA2 [3].

Some other terrain analysis tools have been developed for
StarCraft 1, such as BWEM1, and its clone OVERSEER2 for
StarCraft 2. However, none of them have led to a publication,

1github.com/N00byEdge/BWEM-community
2gitlab.com/OverStarcraft/Overseer

to the best of our knowledge, and they do not propose the
computation of polygons surrounding regions, a useful feature
available in both BWTA and BWTA2 to get the list of points
composing borders of each region.

Since our work propose the same features as BWTA and
BWTA2, and share with the latter the same first steps, we
briefly describe these tools in the following.

In a nutshell, BWTA proposed by Perkins [2] follows the
steps in Alg. 1:

Algorithm 1 BWTA

1: Convert the map into a Boolean 2D-vector of walkable
tiles.

2: Detect connected components of obstacles by flood-fill.
3: Create contour polygons around these connected compo-

nents.
4: Compute the Voronoi diagram of walkable lands.
5: Prune the Voronoi diagram by eliminating leafs with a

parent farther away from the obstacle contour than the leaf
itself. This minimal distance from a point to the contour
is called the point’s radius.

6: Identity nodes of the Voronoi diagram with smaller radius
than their neighbors. Those nodes are considered to be
choke point. Regions are then areas on each side of a
choke point.

7: Merge regions following some criteria about their areas
and the radius of their common choke point. This step is
considered by the author to be problematic since the final
result depends on which order regions have been merged.

8: Compute choke point polygons.
9: Compute region polygons.

Uriarte and Ontañón’s library BWTA2 [3] follows BWTA’s
main steps, with some differences in the algorithm and the
implementation. Algorithmic differences are written in Alg. 2.

For detecting connected components of obstacles (Step 2),
BWTA2 uses a contour tracing algorithm proposed by Chang
et al [4] instead of a flood-fill algorithm. This brings two
advantages: 1. It allows detecting at the same time the inner
and outer contours of each component. 2. Each inner tile
is labeled, allowing us to know in constant time to which
component a tile belongs to.

Step 4 did not exist in BWTA. Obstacle contours are
simplified using the boost::geometry library and its
algorithm simplify, which is an implementation of the
Ramer-Douglas-Peucker algorithm [5].
The major differences between BWTA and BWTA2 imple-
mentations are:

• Voronoi diagram are computed using the boost library
in BWTA2, when BWTA is using the CGAL library.
Compare to the latter, the boost implementation build
Voronoi diagrams containing more information, like the
coordinates of the centers of the inscribed circles tangent
to three points of the obstacle contour, which gives us a
centroid of each region for free.

https://github.com/N00byEdge/BWEM-community
https://gitlab.com/OverStarcraft/Overseer


Algorithm 2 BWTA2

1: Convert the map.
2: Detect connected components of obstacles with a contour

tracing algorithm.
3: Create contour polygons.
4: Simplify contours.
5: Compute the Voronoi diagram.
6: Prune the Voronoi diagram.
7: Identity nodes.
8: Merge regions.
9: Compute choke point polygons.

10: Compute region polygons.

• Pruning the Voronoi diagram takes advantages of the
R-Tree data structure [6] in BWTA2, on which the
boost::geometry library lies on. Indeed, R-Tree
are data structures used for spatial searching. Com-
bine with packing algorithms [7], [8] implemented in
boost::geometry to make bulk loading, it allows
answering very quickly to many different queries about
the overlapping, crossing, etc, of geometrical elements.

• Building region polygons also takes advantage of R-Trees
in BWTA2, since it boils down to a query computing the
difference between an obstacle contour with the polygon
of each choke point.

IV. TERRAIN ANALYSIS AS COMBINATORIAL
OPTIMIZATION

In this paper, we present a new terrain analysis working
with both StarCraft 1 and StarCraft 2, named TAUNT3.

A. Features

TAUNT offers the same features BWTA and BWTA2 pro-
vide: split the map into regions, mark choke points and base
placements, compute contour polygons of regions and choke
points, etc.

The new features compare to BWTA/BWTA2 are listed
below. To the best of our knowledge, the two first ones have
not been implemented by any other terrain analysis tools for
StarCraft.

• Proposing a unique terrain analysis library working with
StarCraft 1 and StarCraft 2 maps, with the same library
interface.

• Offering different options of terrain analysis, to better fit
different needs.

• Allowing dynamic terrain analysis, such as recomputing
regions after some dynamic event like the suppression
of destructible obstacles (also implemented in by the
StarCraft 1 terrain analysis library BWEM).

TAUNT stands for “Terrain Analysis: UNiversal Tool”. Our
goal is to propose a terrain analysis library which is universal
because it can be used for both StarCraft games, but also

3The source code, experimental setup and results can be found at
github.com/richoux/Taunt/releases/tag/0.1

universal because it is able to analyze the same map differently,
aiming to provide an adapted analysis to various StarCraft
bots.

B. Process

TAUNT roughly follows the same steps as BWTA2 until its
fifth step, with a significant difference at Step 2. It also uses
the boost::geometry library, then exploiting the R-Tree
data structure for diverse queries. Its process is given in Alg. 3.

Algorithm 3 TAUNT

1: Convert the map.
2: Detect connected components of walkable lands with a

contour tracing algorithm.
3: Create contour polygons.
4: Simplify contours.
5: Split the land into areas regarding their height and if they

are buildable or not.
6: Compute contour polygons of unbuildable areas (slopes,

bridges, etc).
7: Spot the clusters of resources in each area.
8: For each area with more than one resource cluster, run the

combinatorial optimization problem modeled and solved
within the framework GHOST [9].

9: Compute region polygons.

One problem with all existing terrain analysis libraries for
StarCraft 1 or StarCraft 2 is that they tend to cut the map
into numerous regions. Some of these regions do not contain
any relevant strategic properties and would be probably not
considered as an independent region by human players. This
is due to the fact that all existing libraries are building regions
by considering each slight narrowing of the ground, even large
ones, as a choke point.

We wanted to counter-balance this with TAUNT, and to pro-
pose a different way (actually, different ways) to cut the map.
To be sure all regions have some strategical interest, we ensure
that all of them must contain exactly one resource cluster,
i.e., a pack of mineral patches, with or without gas geyser
around, with some exceptions like islands, areas surrounded
by walkable but unbuildable lands, and areas surrounded by
areas of different heights but without any resource clusters
(which is very rare in practice).

Let’s use the StarCraft 2 map Oxide LE in Fig. 1 to illustrate
the different steps of Alg. 3.

At Step 1, TAUNT gathers information about the map via the
right API, i.e., BWAPI4 for StarCraft 1 maps and CPP-SC25

for StarCraft 2 maps. Step 2 uses the same contour tracing
algorithm from Chang et al [4], but to compute connected
components of walkable lands rather than obstacles like in
BWTA2. Although this algorithm is from 2004, a recent survey
from He et al [10] indicates that it is still state-of-the-art for
computing connected components together with contours.

4github.com/bwapi/bwapi
5github.com/cpp-sc2/cpp-sc2

https://github.com/richoux/Taunt/releases/tag/0.1
https://github.com/bwapi/bwapi
https://github.com/cpp-sc2/cpp-sc2


Fig. 1: Oxide LE (StarCraft 2 map)

After Step 3 and 4, we obtain labeled connected components
and their contour. The result gives what we can observe in
Fig. 2, where green parts are connected components (only one
in this map) together with their contour in black.

Fig. 2: Connected components and contours (Steps 1-4)

Step 5 consists in splitting each component of walkable
land into separated areas regarding their height and if they
are unbuildable or not. In StarCraft 2, unbuildable parts are
usually slopes, bridges and woods, and are therefore natural
choke points. In StarCraft 1, in addition to slopes and bridges,
we can also have large chunks of unbuildable areas, usually
located in the central part of the map (see for instance Fig 7g).
Step 6 computes the contour polygons of these unbuildable
areas.

The result of Steps 5 and 6 can be seen in Fig. 3. Blue
parts are unbuildable areas. Low, high and very high areas are
respectively in yellow, khaki and green.

Since we aim to have exactly one resource cluster per region
(with some exceptions listed at the beginning of this section),
we need to locate and count clusters on each walkable area.
This is done with Step 7, and areas with more than one
resource cluster will be handled by Step 8. Only buildable
areas are concerned by these steps: since, by definition, players

Fig. 3: Splitting areas by height (Steps 5-6)

cannot build bases upon unbuildable tiles, there are never
resource clusters on unbuildable areas.

In Fig. 4, we can see resource clusters in blue or red boxes.
Red dots are the centroid of a cluster, and orange lines connect
this centroid to all tiles upon which there is a resource of the
cluster.

Fig. 4: Spotting resource clusters in areas (Step 7)

If there is only one cluster in an area, it is framed by a blue
box on the figure. Otherwise, if they are two or more clusters,
they are framed by a red box. In that case, if n resource clusters
exist on the same area, we need to find n − 1 separations
to make regions containing exactly one cluster each. To do
this, we solve a combinatorial optimization problem (Step 8)
to find separations satisfying some mandatory constraints and
optimizing a giving objective function. We show separations
found by solving two combinatorial optimization problems
while trying to minimize the total length of separations
(Fig. 5), corresponding to choke points, and while trying
to minimize the least squares difference of region surfaces
(Fig. 6). Separations are represented by red lines.

Once regions have been computed, it is trivial to merge
two separated regions by an obstacle if the latter is destroyed,
and to run Step 8 on this merged region if making a new



Fig. 5: Building region: short separations (Steps 8-9)

Fig. 6: Building region: equivalent surfaces (Steps 8-9)

separation is required. The way TAUNT decides separations
area by area, allows us to reanalyze a map locally, without
the need to reconsider it as a whole.

C. Intuition behind our combinatorial optimization models

We modeled the problem of placing n − 1 separations in
an area containing n resource clusters to make n regions with
exactly one resource cluster each, with n ≥ 2, in a Constraint
Programming formalism called Error Function Optimization
Problem, or EFOP [11].

An EFOP model is actually an Error Function Satisfaction
Problem model, or EFSP, together with an objective function
we aim to maximize or minimize. An EFSP model is defined
by a set of variables, a set of domains, i.e., the possible values
each variable can take, and a set of constraints determining
which combinations of variable values are possible or forbid-
den. Our EFSP model is defined as follows:

Variables: All possible separations, i.e., all possible pairs of
points on the contour polygon of an area,
Domains: Each variable has the domain {0, 1}, indicating if
its corresponding separation is selected or not,
Constraints:

1) NoCrossings: No separations crossing each other,
2) MaxOneClusterPerRegion: Separations must split the

terrain into regions such that each region exactly con-
tains one resource cluster.

In EFSP and EFOP models, constraints are represented as
error functions. For the two constraints in our model, their
error function is expressed as follows:

• NoCrossings: Number of separations crossing each other.
• MaxOneClusterPerRegion: The highest number of re-

source clusters on the same region minus 1, added to
the number of regions without any clusters.

Having models as small as possible, i.e., with few variables,
small domains and few constraints, is important to solve them
faster. We have the following tricks to reduce the model size:

• Ill-formed separations, i.e., crossing resources or unwalk-
able/unbuildable tiles, are filtered out from the set of
variables before running the constraint solver.

• Since we know how many separations we must have to
get n regions, we randomly select n−1 initial separations
and ask the solver to handle the problem as a permutation
problem. This allows us not to consider a constraint
checking the correct number of selected separations.

In order to allow better separations, we enrich the set of
variables by adding some points in the contour polygon to
break long lines (typically, when the contour contains an
edge of the map). Although this increases the model size by
adding variables, it may allow nicer separations improving the
objective function.

After these variable reduction tricks and this enrichment,
we obtain models from some hundreds to 2,000 variables,
regarding the map and their areas. The mean numbers of
variables among areas within the same maps are given in
Table I.

We use this EFSP model for the experiments in this paper.
When TAUNT will be released, we plan to propose other
models with other constraints to offer more diverse analysis
possibilities to StarCraft bot authors. For instance, we could
add a constraint to force regions to have a minimal surface, or
to get perfectly symmetric separations on symmetrical maps.

We get an EFOP model upon this EFSP model by adding
an objective function. We have tested two different ones:

Objective functions:
1) MinSeparationLength: Minimize the sum of separation

length.
2) LeastSquaresAreas: Least squares area difference, i.e.,

minimize the difference of region areas.

The different region-making we got with these two objective
functions can be observed in Fig 5 and 6, respectively.

D. Our formal combinatorial optimization models

The EFOP model above is informal and is here to give the
intuition. We show below the formal EFOP model:



Variables: V = {v1, v2, . . . , vk}, with vi a possible separation
Domains: Di = {0, 1},∀i ∈ [1, k]
Constraints: C = {fcross, fclust}
fcross(~v) = #{(vi, vj) | cross(vi, vj),∀1 ≤ i, j ≤ k, i 6= j}
fclust(~v) = Max(0,Max(#cluster1, . . . ,#clustern)− 1)

+#{regionj | #clusteri = 0}

with ~v = (v1, v2, . . . , vk), fcross and fclust the error functions
representing constraints NoCrossing and MaxOneClusterPer-
Region, respectively, cross(vi, vj) the predicate returning true
iff vi and vj are crossing each other, and #clusteri the
number of resource clusters in the i-th region.

Thus, our objectives functions are:

Objective functions: O = {fsep, fareas}

fsep(~v) = Min

k∑
i=1

(vi × lengthi)

fareas(~v) = Min

n∑
i=1

(mean area− areai)
2

with lengthi the length of the i-th separation vi, areai the
surface of the i-th region and mean area the mean surface
of considered regions.

These models have been implemented using the framework
GHOST [9], which contains a local search solver to find
a solution of the problem within a given timeout. For our
experiments presented in Section V, we set a timeout of
n × 100ms to find separations in each area containing n
resource clusters, with n ≥ 2. TAUNT contains a mechanism
that double timeouts and relaunch this solving step if no
solutions have been found in its previous run.

V. EXPERIMENTAL RESULTS

We tested our library over the 10 StarCraft 1 maps from the
annual AIIDE StarCraft AI competition6 and the 7 StarCraft 2
maps from the pre-season 11 of the SC2AI Arena competi-
tion7. Map names as well as the mean number of variables
of their EFOP models are listed in Table I, and visual results
considering the MinSeparationLength objective function are
given in Fig. 7, except Oxide LE since it is our running
example in Section IV-B.

Tables II and III give TAUNT runtimes considering the
EFOP model with the MinSeparationLength objective func-
tion, but the LeastSquaresAreas objective function leads to
equivalent runtimes. Unless the chosen objective function is
computation-heavy, TAUNT runtimes generally depend on the
satisfaction part of the combinatorial problem model.

A. Comparaison BWTA2

Tests have been conducted using a bot under development
able to play both at StarCraft 1 and StarCraft 2, on a machine
equipped with a Core i9 9900 CPU and 32 GB of RAM,
running on Windows 10. TAUNT is written in C++ and has

6www.cs.mun.ca/ dchurchill/starcraftaicomp
7aiarena.net

TABLE I: StarCraft maps used for experiments and mean
number of variables of their EFOP models.

StarCraft 1 maps StarCraft 2 maps
Name Mean #vars Name Mean #vars

Benzene 308 Deathaura LE 732
Destination 0 Jagannatha LE 1434

Heartbreak Ridge 673 Lightshade LE 1103
Aztec 292 Oxide LE 1285

Tau Cross 2052 Pillar Of Gold LE 1001
Andromeda 164 Romanticide LE 1188

Circuit Breakers 339 Submarine LE 454
Empire of the Sun 508

Fortress 495 (LE: Ladder Edition)
Python 1063

been compiled with the Visual Studio 2022 compiler with the
/02 optimization option.

The terrain analysis results, namely the region-making and
the computation of their contour polygon, are good on all
tested maps: TAUNT shows its ability to split a map into
regions with the desired properties. In order to have a point of
comparison with existing libraries and an objective metric for
the evaluation of TAUNT’s performance, we compare runtimes
of BWTA2 and TAUNT on StarCraft 1 maps. We choose
BWTA2 rather than a more modern library like BWEM, since
the latter does not propose features like the computation of
contours. BWTA2 is actually the more modern terrain analysis
library for StarCraft 1 offering equivalent features as TAUNT.

TABLE II: Runtime comparison in milliseconds between
BWTA2 and TAUNT.

StarCraft 1 Map BWTA2 TAUNT
Benzene 906 344

Heartbreak Ridge 794 821
Aztec 1112 751

Tau Cross 1046 1839
Andromeda 1114 626

Circuit Breakers 1187 654
Empire of the Sun 1132 842

Fortress 1074 491
Python 1089 1203

Median runtime 1089 751
Mean runtime 1050.44 841.22

Pop. standard deviation 116.34 419.82

Runtime comparisons are shown in Table II. BWTA2 and
TAUNT have been run on the same machine through the
same bot, under the same conditions. The full run of BWTA2
and TAUNT algorithms is measured in milliseconds, including
fetching data from APIs and preparing data structures. The
reader can observe that the map Destination is not on this
table. We have taken out this map from comparisons because
it would be completely at the advantage of TAUNT, being an
unfair comparison with BWTA2. Indeed, Destination is a map
such that all walkable areas contain one resource cluster only,
so there is nothing to compute for TAUNT at Step 8 in Alg. 3,
which is the more complex and computation heavy step. This
is why we have 0 variables in Table I, and why there are

https://www.cs.mun.ca/~dchurchill/starcraftaicomp/
https://aiarena.net/


(a) Benzene (StarCraft 1) (b) Destination (StarCraft 1) (c) Heartbreak Ridge (StarCraft 1) (d) Aztec (StarCraft 1)

(e) Tau Cross(StarCraft 1) (f) Andromeda (StarCraft 1) (g) Circuit Breakers (StarCraft 1) (h) Empire of the Sun (StarCraft 1)

(i) Fortress (StarCraft 1) (j) Python (StarCraft 1) (k) Deathaura LE (StarCraft 2) (l) Jagannatha LE (StarCraft 2)

(m) Lightshade LE (StarCraft 2) (n) Pillar Of Gold LE (StarCraft 2) (o) Romanticide LE (StarCraft 2) (p) Submarine LE (StarCraft 2)

Fig. 7: StarCraft maps



no red separation lines in Fig 7b. As a result, Destination is
processed in 15ms by TAUNT, against 843ms by BWTA2.

Results from Table II allow us to conclude that TAUNT runs
faster over most maps than BWTA2, and has a significant
lower median and mean runtime. The standard deviation is
almost 4 times higher, though: this is due to the runtime of
Step 8 in Alg. 3 that depends on the number of areas to handle
and the number of separations to found.

TABLE III: Runtimes in milliseconds on StarCraft 2 maps.

StarCraft 2 maps TAUNT
Deathaura LE 1283
Jagannatha LE 431
Lightshade LE 755

Oxide LE 377
Pillar Of Gold LE 824
Romanticide LE 3475
Submarine LE 242

Median runtime 755
Mean runtime 1055.28

Pop. standard deviation 1039.35

Since there are no terrain analysis library for StarCraft 2
with equivalent features as TAUNT, we could not make any
runtime comparison on StarCraft 2 maps. Thus, Table III
shows runtimes for TAUNT only. Like for Table II, runtimes
take into account the full run of TAUNT’s algorithm, including
building inputs and initializing data structures. Looking at
medians in Tables II and III, we can conclude that runtimes
over StarCraft 1 and StarCraft 2 maps are equivalent. The
StarCraft 2 map Romanticide is an exception: it contains 2
areas with 2 separations required for each, and 1 area requiring
5 separations, which is significantly more than the average
map. This is the only map where TAUNT needed to use its
inner mechanism that doubles the timeout and relaunch the
solver, since no satisfying separations have been found during
the first run of the solver. This explains the difference of
runtimes between Romanticide and other StarCraft 2 maps.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we propose a library, TAUNT, handling terrain
analysis in StarCraft games as a combinatorial optimization
problem. This is the first terrain analysis work for StarCraft to
tackle the problem as a combinatorial optimization problem,
and the first to use Constraint Programming to model and
solve it. We give the problem model in the Error Function
Optimization Problem formalism, and we test our library on
10 StarCraft 1 maps and 7 StarCraft 2 maps from StarCraft
AI competitions.

The main features of our library are: 1. The possibility
for StarCraft 1 and StarCraft 2 bots to use it with the same
interface, 2. The split of maps into regions in a human-like
fashion, avoiding creating too many regions without significant
strategical values, 3. The computing of region contours, 4.
The ability to dynamically reanalyze the terrain (for instance
after the destruction of an obstacle), 5. The possibility to
make different kind of terrain analysis of the same map. At

the moment this article is written, no other terrain analysis
libraries for StarCraft games propose all these features.

Concerning this last feature, we show in this paper two
ways to split a map into regions, according to the model
objective function. A future work to enhance the library can
consist in implementing more diverse combinatorial optimiza-
tion problem models to fit different needs in terms of terrain
analysis. For instance, we could have models with a constraint
to give a maximal or minimal bound of region surfaces, to
force symmetrical regions (if the map is itself symmetrical), or
to allow large, central buildable regions without any resource
clusters.

We strongly believe that having a universal tool to get qual-
itative spatial representations, able to handle both StarCraft
games homogeneously and offering the possibility of making
different analyses of the same map, is a necessary step toward
bots with true adaptability, able to make non-scripted decisions
according to the environment and the current situation in a
game. We hope to see a new wave of bots emerges thanks to
TAUNT.

REFERENCES

[1] M. Certicky, D. Churchill, K.-J. Kim, M. Certicky, and R. Kelly,
“Starcraft ai competitions, bots, and tournament manager software,”
IEEE Transactions on Games, vol. 11, no. 3, pp. 227–237, 2019.

[2] L. Perkins, “Terrain analysis in real-time strategy games: An integrated
approach to choke point detection and region decomposition,” in Pro-
ceedings of the Sixth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE). AAAI Press, 2010, pp.
168–173.

[3] A. Uriarte and S. Ontañón, “Improving terrain analysis and applications
to rts game ai,” in Proceedings of the Twelveth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE).
AAAI Press, 2016, pp. 15–20.

[4] F. Chang, C.-J. Chen, and C.-J. Lu, “A linear-time component-labeling
algorithm using contour tracing technique,” Computer Vision and Image
Understanding, vol. 93, no. 2, pp. 206–220, 2004.

[5] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Cartographica: The International Journal for Geographic Information
and Geovisualization, vol. 10, pp. 112–122, 1973.

[6] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proceedings of the 1984 ACM SIGMOD International Conference on
Management of Data. Association for Computing Machinery, 1984,
pp. 47–57.

[7] S. Leutenegger, M. López, and J. Edgington, “Str: a simple and
efficient algorithm for r-tree packing,” in Proceedings 13th International
Conference on Data Engineering, 1997, pp. 497–506.

[8] Y. J. Garcı́a R, M. A. López, and S. T. Leutenegger, “A greedy algorithm
for bulk loading r-trees,” in Proceedings of the 6th ACM International
Symposium on Advances in Geographic Information Systems. Associ-
ation for Computing Machinery, 1998, pp. 163–164.

[9] F. Richoux, A. Uriarte, and J.-F. Baffier, “Ghost: A combinatorial
optimization framework for real-time problems,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 8, no. 4, pp. 377–388,
2016.

[10] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, “The connected-
component labeling problem: A review of state-of-the-art algorithms,”
Pattern Recognition, vol. 70, pp. 25–43, 2017.

[11] F. Richoux and J.-F. Baffier, “Learning interpretable error functions for
combinatorial optimization problem modeling,” in Data Science Meets
Optimisation IJCAI workshop (DSO), 2021, pp. 1–7.


	Introduction
	Background
	RTS games and StarCraft
	Terrain Analysis

	Related work
	Terrain Analysis as Combinatorial Optimization
	Features
	Process
	Intuition behind our combinatorial optimization models
	Our formal combinatorial optimization models

	Experimental results
	Comparaison BWTA2

	Conclusion and perspectives
	References

