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Abstract—Games, including abstract board games, constitute
a convenient ground to create, design, and improve new AI
methods. In this field, Monte Carlo Tree Search is a popular
algorithm family, aiming to build game trees and explore them
efficiently. Combinatorial Optimization, on the other hand, aims
to model and solve problems with an objective to optimize and
constraints to satisfy, and is less common in Game AI. We
believe however that both methods can be combined efficiently,
by injecting Combinatorial Optimization into Monte Carlo Tree
Search to help the tree search, leading to a novel combination
of these two techniques. Tested on the board game boop., our
method beats 96% of the time the Monte Carlo Tree Search
algorithm baseline. We conducted an ablation study to isolate
and analyze which injections and combinations of injections lead
to such performances. Finally, we opposed our AI method against
human players on the Board Game Arena platform, and reached
a 373 ELO rating after 51 boop. games, with a 69% win rate
and finishing ranked 56th worldwide on the platform over 5,316
boop. players.

Index Terms—Monte Carlo Tree Search, Combinatorial Opti-
mization, Constraint Programming, Board Games

I. INTRODUCTION

During one of the 51 online games opposing our AI agent
against a human player, we were asked in the chat “Why
researching new AI methods?” It is true that some existing AI
methods, like Deep Reinforcement Learning, would certainly
defeat any human players at this game, if properly trained.

Although the perspective of making an AI agent with a
deep mastery of a game is satisfying, this is not the reason
why one does research in Game AI. Research is driven by the
quest to push the boundaries of knowledge. This can be done
by proposing something new. One way to search for new AI
methods is to try combining two existing methods that have
never been combined before.

This is what this study aims to do, by combining Monte
Carlo Tree Search and Combinatorial Optimization in a way
that has been never explored, to the best of our knowledge.
This paper actually proposes three possible combinations, or
to be more specific, three different injections of Combinatorial
Optimization into Monte Carlo Tree Search, to improve per-
formances of the latter. In particular, such combinations can
be very profitable on devices with limited computing power,
where only a few random playouts can be performed.

The proposed method in this paper is applied on a recent
abstract board game called boop. (without capital letters and
with a dot.) The main interest of this game is to be simpler
than Go or Chess, but deep enough to offer complex strategies.

These characteristics motivate its choice to be the testbed of
a new method.

II. BACKGROUND

This section introduces the two combined AI techniques,
Monte Carlo Tree Search and Combinatorial Optimization, as
well as boop., the board game used as a testbed.

A. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a family of tree search
algorithms relying on the Monte Carlo method, i.e., random
samplings.

Originally developed for Go [1], this type of tree search
algorithm has been applied successfully to many other board
games such as Checkers, Hex and Backgammon, as well
as strategy, general and arcade video games [2]–[4]. MCTS
has also been combined with Deep Reinforcement Learning
to reach state-of-the-art levels at Go, Chess, and Shogi [5],
among other games.

Fig. 1: Steps of the Monte Carlo Tree Search.

MCTS aims to build a game tree of a reasonable width,
even with games implying a high branch factor like Go, by
focussing on promising branches of the tree. Its principle,
depicted in Figure 1, is simple. It consists in the iteration of
4 steps:

1) Selection, where a node in the tree is chosen following
a given Tree Policy.

2) Expansion, where a new node is inserted into the tree,
by applying a move from the node previously selected.

3) Simulation, where moves are successively chosen fol-
lowing a Default Policy (usually, random moves) until
reaching a stop criterion (usually, the end of the game).
Such a series of moves is called a playout or a rollout. In
this paper, we call this step the Playout step, allowing
us to have a simple naming convention for our different
agents, as explained in Section V.
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4) Backpropagation: The state reached after the simula-
tion is evaluated by a function computing a reward,
which is backpropagated to its parent node up to the
root. This reward will influence the Tree Policy during
the Selection step.

After reaching a timeout or a given number of iterations, the
MCTS algorithm stops and outputs the move maximizing a
given criterion, such as the most visited child of the root node,
or the one with the highest reward, etc. The reader can refer
to Browne et al’s survey [6] for further information on MCTS.

In practice, the Tree Policy for Selection is often determined
by computing a Upper Confidence Bound (UCB) function [6].
Applying UCB on MCTS leads to the Upper Confidence bounds
applied to Trees (UCT) algorithm [7]. UCT is a special case
of MCTS. Although the experimental setup in Section V
implements UCT, our method could be applied in principle
with any MCTS algorithm. This is why this paper refers to
MCTS rather than UCT specifically.

B. Combinatorial Optimization

Combinatorial Optimization is the field aiming to model
and solve problems where one must find the optimal com-
bination of discrete variable assignments to maximize or
minimize an objective function, while satisfying all given
constraints. Several formalisms exist to model such problems:
Linear Programming, Answer-Set Programming, etc. In this
paper, we model our Combinatorial Optimization problem
in a Constraint Programming formalism called Constrained
Optimization Problems [8] (COP).

A COP is characterized by the quadruplet (V,D,C, f),
where:

• V is the set of decision variables of the problem.
• D is the set of domains. A domain is the set of values

a variable can be assigned to.
• C is the set of constraints, forbidding some variable

assignment combinations.
• f is the objective function to optimize.
There exist two families of algorithms to solve problems

modeled in Constraint Programming: Complete and incom-
plete algorithms. Complete algorithms cover the entire search
space by pruning it, and can proof the optimality of a solution.
Incomplete algorithms, or meta-heuristics, rely on random
moves and heuristics to explore the search space. Although
such methods cannot prove the optimality of a solution, they
are faster than complete algorithms in practice and can tackle
larger problems.

C. boop.

boop. is a board game created by Scott Brady and published
in 2022 by Smirk and Dagger Games. It is the commercial
version of Gekitai2 (Gekitai squared), released by Scott Brady
for free in 2020 on the website BoardGameGeek. Since both
games have exactly the same rules, we will refer to this game
only by its commercial name boop.

boop. is a deterministic, fully observable, 2-player game.
The rules are simple: Each player has 8 small and 8 large

pieces, and starts with a pool of 8 small pieces. Players place
alternately one piece from their pool on a free square of the
6×6 board. When a piece is placed, it pushes away all adjacent
pieces from one square, except if a piece is blocked by another
piece, like depicted in Figure 2a: A white piece has been
played in c3 and pushed away a black piece from b2 to a1,
but did not push away the white piece in d4 because it is
blocked by another piece in e5. Large pieces can push away
any other pieces, but small pieces cannot push away large
pieces (Figure 2b). When a piece is pushed out of the board,
it returns into its player’s pool.

When 3 pieces of a player are aligned, they are removed
from the board at the end of the player’s turn, and return into
the player’s pool. Small pieces removed that way are promoted
to large pieces. If more than 3 pieces are aligned, the player
chooses 3 adjacent pieces to remove. If players place their 8
pieces on the board, they can choose one piece to remove from
the board. In case this piece is a small one, it is promoted to
a large piece.

A player wins the game if he or she has 3 large pieces
aligned at the end of his or her turn (Figure 2c), or if 8 large
pieces are placed on the board at the end of the player’s turn
(Figure 2d). There are no tied games in boop.

(a) Push rules 1 (b) Push rules 2

(c) Victory condition 1 (d) Victory condition 2

Fig. 2: Main rules of boop. These images are from a boop.
Android app we are developing.

III. RELATED WORK

Many works tried to combine MCTS and Combinatorial
Optimization, and more specifically Constraint Programming,
but always from a different perspective than ours.

To solve a special case of the Travelling Salesman Problem
encountered in the automotive industry, Antuori et al. [11]
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combine MCTS and Combinatorial Optimization to improve
Combinatorial Optimization solvers by applying MCTS tech-
niques to balance exploration and exploitation of the optimiza-
tion problem search space. This is a fundamental difference
with our work: Where we use Combinatorial Optimization to
improve an MCTS method, Antuori et al. use MCTS to improve
a Combinatorial Optimization method. A common point is
that they replace MCTS playouts with a Deep-First Search
method, when we replace them by a series of Combinatorial
Optimization problem resolutions, one for each move in the
simulation.

In the same manner, the Bandit Search for Constraint
Programming (BASCOP) algorithm from Loth et al [12] aims to
adapt MCTS to the characteristics of a Constraint Programming
search tree. Again, the goal here is to use MCTS to improve
the search for a combinatorial problem. Specifically, they
designed the MCTS reward function to estimate to each couple
(variable, value) a failure score, called relative failure depth,
then exploited by the solver: Their algorithm guides the
Constraint Programming search in the neighborhood of the
previous best solution, by exploiting this relative failure depth
estimated during the search space exploration.

Goffinet and Ramanujan use MCTS to solve the Maximum
Satisfiability Problem (a.k.a. MaxSAT) [13], to balance ex-
ploration and exploitation during the search of a SAT solver.
They propose the UCTMAXSAT algorithm, where each node
in the tree is associated to a variable in the SAT formula,
with two possible decisions corresponding to the variable
evaluation. Playouts and leaf node evaluations are done by
two SAT stochastic local search algorithm runs, one starting
by evaluating the expended node by true, the other one by
false.

Finally, we can also mention Sabharwa et al.’s work to guide
Combinatorial Optimization in Mixed Integer Programming
with MCTS [14].

To the best of our knowledge, all works combining Com-
binatorial Optimization and MCTS methods, like the related
works presented above, aim to take advantage of the MCTS
capacity to handle the exploration-exploitation dilemma to
help Combinatorial Optimization solvers exploring their search
space. From that perspective, the work proposed in this paper
differs radically from these previous works, combining two
methods the other way around, i.e., exploiting Combinatorial
Optimization capacities to find optimal solutions under con-
straints to improve a Monte Carlo Tree Search.

One can also find many Game AI works combining MCTS
with heuristics to improve the MCTS method. These works
include using heuristics to bias the Tree Policy by replacing
or extending the usual UCB function by some heuristics for
selection [15], [16], or using heuristics to bias the Default
Policy by guiding playouts [17], [18]. Świechowski et al.
wrote a good survey about recent MCTS modifications and
applications [19]. Our method differs from these works in two
aspects:

1) It does not simply use a heuristics, but solve a Combi-
natorial Optimization problem to bias both the Tree and
Default Policies, with the advantages explained in the
next paragraph.

2) The Tree Policy is biased without modifying nor replac-
ing the UCB function. Instead, Combinatorial Optimiza-
tion is used to narrow the number of nodes that can be
randomly drawn during the Selection step.

One can notice that the objective function and the con-
straints of the Combinatorial Optimization model could ac-
tually be combined into a unique heuristics by replacing
constraints with penalty functions. However, there are three
main advantages to bias the Tree and Default Policies by
modeling and solving a Combinatorial Optimization problem
rather than simply using a heuristics:

1) The heuristics output would not allow to mathematically
certify that all constraints are satisfied, unlike solving a
COP.

2) Expressing the bias as a COP allows us to take advantage
of solvers containing specific mechanisms to exploit the
problem structure induced by the constraint network,
both with complete solvers (filtering and constraint
propagation) and meta-heuristics (constraint-based local
search).

3) While using a heuristics, one needs to call it on ev-
ery possible move. However, constraint solvers do not
explore the entire move space: For instance, complete
solvers prune the problem search space to avoid visiting
subspaces where they determined that solutions are
infeasible or suboptimal. Although this feature does not
have a strong impact for boop., since the move space of
the game is small, this could be very useful for other
games and applications with significantly larger move
or action spaces.

IV. MIXING MCTS AND COMBINATORIAL OPTIMIZATION

Before describing the Combinatorial Optimization problem,
we explain at the beginning of this section how do we combine
Combinatorial Optimization and MCTS methods. Then, we
give the intuitive idea of the Combinatorial Optimization
model in Subsection IV-A, followed by its formal model and
some design choices.

Random playouts are a powerful mechanism within MCTS.
However, to have a good estimation of the current game
state and the value of its possible moves, one must run a
significant number of playouts. This is not always easy to do,
depending on the hardware: We implemented a vanilla MCTS
method within a boop. Android app but quickly realized that
the number of playouts we could run on our Android device
within a reasonable time was too small to be reliable. Within
one second, the device could only run about 80 playouts in
average.

This issue can be tackled by replacing playouts with moves
that are selected by solving the Combinatorial Optimization
problem described in the next Subsection IV-A. Algorithm 1
illustrates how it works. Each move of the playout is randomly
drawn among the moves maximizing the Combinatorial Op-
timization problem (Line 4). After being drawn, a move is
simulated to get a new game state (Lines 5 and 6), and an
associated reward is computed regarding if the move leads
to a terminal game state (Line 8) or not (Line 10). This is
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repeated until a terminal state is reached or after k moves
(while loop at Line 3). Then, the playout stops and returns
the cumulative, normalized reward (Line 12). The value of k
we choose in practice is discussed in Subsection IV-A. The
playout reward is estimated by computing a discounted sum
of the normalized scores of the successive k moves, divided
by k. Scores are simply the objective function output of the
Combinatorial Optimization model and are normalized within
the range [−1, 1], such that -1 is the score of a loss and 1
the score of a victory. The discount factor is a parameter d
we discuss in Subsection IV-A. We denote by a = (p, r, c)
the move placing a piece of type p on the board at row r
and column c. Let a1, . . . , ak be the k moves played during a
playout. Its playout reward R is estimated by Equation 1

R =
1

k

k∑
i=1

di.f(ai) (1)

where f is the objective function of the Combinatorial Op-
timization model. Notice that in Algorithm 1, the Reward
function on Line 10 corresponds to computing di.f(ai). Since
the image of f is [−1, 1], the discount factor is such that d ≤ 1
holds, and the sum of the k products is divided by k, we have
R ∈ [−1, 1]. The playout reward is thus not necessarily 0/1
or −1/1. This is perfectly acceptable for the UCB function,
like described in Kocsis and Szepesvári’s paper introducing
the UCT algorithm: We are here dealing with a P-game tree,
that is, “a minimax tree that is meant to model games where
at the end of the game the winner is decided by a global
evaluation of the board position where some counting method
is employed” [7], instead of the classic win/loss evaluation.

We also inject the same Combinatorial Optimization prob-
lem into the MCTS process to bias the Selection and Expansion
steps, as illustrated by Algorithm 2. For the Selection step,
the solver is called to pre-select the m best moves regarding
the current game state (Line 1). In other words, it selects
m nodes among the root’s children. Unselected children are
masked (Line 2), to prevent the UCB function considering
them, forcing to select one of the preselected children (Line 4).
This is analogical to invalid action masking in Reinforcement
Learning [9], where invalid or poor actions/decisions are
masked mostly at the beginning of the learning process, to
avoid confused and chaotic situations that are usual during the
first iterations, thus shortening the learning. For the Expansion
step, the Combinatorial Optimization solver is simply called
to find what are the best moves to play, regarding the current
game state and excluding the moves that have been already
explored (Line 11).

Finally, we set a timeout of 1 second to let our method
build and explore the game tree before outputting a move
to play. The set of moves with the highest score/visits ratio
is computed (Line 19) and the algorithm returns one move
randomly drawn from this set, following a uniform distribution
(Line 20).

In summary, our method injects Combinatorial Optimization
into 3 steps of MCTS: Just before the Selection step (Algo-
rithm 2, Line 1) and during the Expansion step (Algorithm 2,
Line 11), to bias to Tree Policy, and during the Playout step,

Algorithm 1: PLAYOUT

Input: A node, an integer k and a game state gs
Output: The normalized playout score

1 iterations ← 0
2 score ← 0
3 while node is not terminal and iterations < k do
4 best move ← Random(Solver(gs))
5 node← Simulate move(best move)
6 gs← Update(gs, node)
7 if node is terminal then
8 score ← score + Terminal score(node)

9 else
10 score ← score + Reward(node, iterations)

11 iterations ← iterations + 1

12 return score / iterations

Algorithm 2: ENHANCED MCTS
Input: A game state gs and a root node
Output: One of the best estimated moves

1 preselected moves ← Solver(gs)
2 unselected mask ← Childs(root) \ preselected moves
3 while timeout unreached do

// Select a node in the tree
4 selected ← UCT(unselected mask)
5 gs← Update(gs, selected)
6 if selected is terminal then
7 selected.visits ← selected.visits + 1
8 Backprop(selected.parent, selected.score)
9 continue

10 masked childs ← Childs(selected)
// Expand the tree with a new node

11 expanded ← Random(Solver(gs, masked childs))
12 gs← Update(gs, expanded)
13 expanded.parent ← selected
14 if expanded is not terminal then
15 expanded.score ← Playout(expanded, 20, gs)

16 else
17 expanded.score ← Terminal score(expanded)

18 Backprop(selected, expanded.score)

19 best moves ← Best ratio(preselected moves)
20 return Random(best moves)

replacing playouts by successive Combinatorial Optimization
problem resolutions (Algorithm 1, Line 4), redefining a De-
fault Policy. Despite these modifications, the resulting tree
search algorithm is still an MCTS algorithm because all 4
steps are applied, and there are still some randomness in the
Playout step: If the Combinatorial Optimization solver finds
several optimal solutions, i.e., different moves of the same
quality according to the objective function, then one of these
moves is randomly selected, following a uniform distribution
(Algorithm 1, Line 4, and Algorithm 2, Line 11). Such a
situation occurs often in a game: We ran 10 games specifically
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to evaluate this, and measured it occurs in average 21,352
times per agent and per game.

It is worth noticing that the method presented in this paper
focuses on the “move decision-making” in boop., i.e., placing a
piece on the board. There is actually a second type of decision
players must take in a boop. game: In some occasions, a player
has the choice of which pieces to promote. In this work, we
handle this decision via a simple heuristics favoring taking
pieces on the border of the board. All agents presented in
Section V share this heuristics about “promotion decision-
making”.

The next subsection introduces the tackled Combinatorial
Optimization problem.

A. The Combinatorial Optimization model

Before proposing a formal model of the tackled Combina-
torial Optimization problem, we first give the intuition behind
it. For node pre-selections, expansions, and playouts, the
same Combinatorial Optimization problem is solved: Finding
a move maximizing the game state score, determined by a
given heuristics computed by the objective function, such that
the following constraints are satisfied: 1. The piece we play
belongs to our pool, 2. Its position is a free square on the
board, and 3. The combination (piece type, position) is not a
masked move. The two first constraints certify that the move is
valid, the last one forces finding a move that does not belong
to the set of masked ones. This is necessary for the node pre-
selection, where all nodes but m are masked, but also for the
expansion, to assure we won’t regenerate an existing node.

The following model formally describes the problem pre-
sented above:

Variables: V = {vp, vr, vc}, with vp the variable deciding the
type of piece to play for the move, and vr, vc the variables
about the row and column number of the move position.
Domains: D = {Dpiece, Dposition}, where Dpiece =
{small, large} is the domain of vp and Dposition =
{1, . . . , 6} the domain of vr and vc.
Constraints: C = {HasPiece(vp), F reePosition(vr, vc),
Unmasked(vp, vr, vc)}. We formally describe these con-
straints latter in the section.
Objective function: f(vp, vr, vc) is a heuristics assigning a
score to the game state after simulating the move (vp, vr, vc).
The exact heuristics function formula is rather long and not
easy to display clearly in a paper, but basically, it attributes a
score based on the difference between the two players of the
number of pieces on the board, on the center and on the border,
the difference of large pieces possessed, and if two or three
pieces are aligned. This last part of the score differs regarding
the type of pieces composing the alignment. The sum of all
these is a number in the range [-MAX, MAX]. We divide it
by MAX to normalize the outputted score in [-1,1]. The exact
heuristics function can be found in the source code1.

The three constraints of the model can be formally described
as follows:

1heuristics.cpp

HasPiece(vp) =

{
true if vp ∈ player pool
false otherwise

FreePosition(vr, vc) =

{
true if (vr, vc) ∈ free squares
false otherwise

Unmasked(vp, vr, vc) =

{
true if (vp, vr, vc) /∈ mask
false otherwise

To be valid, a variable assignment must be such that all
constraints output true.

The model contains three parameters, already introduced
at the beginning of this section: The number k of moves
computed during playouts, the number m of pre-selected nodes
and the discount factor d. We did not make an extensive
parameter tuning for this study and set their value after some
very brief trials. An extensive parameter tuning could probably
improve the global performance of our method. This is let as
future work. We set k = 20, m = 5 and d = 0.9.

The C++ framework GHOST [10] has been used to model
and solve the Combinatorial Optimization problem. It contains
a constraint-based local search solver, as well as a backtrack-
less, complete solver since its version 3, designed to find all
solutions of the tackled problem. We use this complete solver
to find and evaluate all possible moves in a given game state.

We can now introduce our experimental setup and results.
Two types of experiments have been performed: 1. Section V
compares our method with two baselines and with variations of
our method, running AI versus AI games. 2. Even if our goal
is not to make the best AI agent playing boop., we wanted to
evaluate its level against human players. To do so, we played
the AI agent against 28 human players in 51 games on the
platform Board Game Arena2. This is detailed in Section VI.

V. AI VERSUS AI EXPERIMENTS

The goal of this work is to improve MCTS methods by inject-
ing Combinatorial Optimization techniques. A plain, vanilla
MCTS method is therefore a natural baseline. Comparing the
Combinatorial Optimization-enhanced MCTS with a vanilla
MCTS is easy: One just has to disable all Combinatorial
Optimization solver calls in the enhanced MCTS to get a vanilla
MCTS implementation. Thus, Selection is done considering all
children of the root node, and Expansion and Playout are done
randomly. We did not give our method a specific name, so we
refer to it by MCTS-CO in this section.

This section also compares MCTS-CO with an agent choos-
ing its next move by only calling the heuristics function used in
our objective function. This constitutes the second baseline, to
test if all improvements reached by MCTS-CO come from the
heuristics only, or if it should be attributed to the combination
of MCTS and Combinatorial Optimization.

Finally, an ablation study is performed by comparing MCTS-
CO with itself when Combinatorial Optimization is enabled

2https://boardgamearena.com

https://github.com/richoux/pobo/blob/21318db46e0f8fcc99d1cfaf03a9f8df7ec5d00a/app/src/main/cpp/heuristics.cpp
https://boardgamearena.com
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or disabled for the Selection, the Expansion and the Playout
steps. We denote agents implementing these modifications by
MCTS + the first letter of the concerned steps. For instance,
MCTS+SP is the MCTS agent injecting Combinatorial Opti-
mization in the Selection and Playout steps. The reader can
observe that the agent MCTS-CO corresponds thus to the agent
MCTS+SEP.

A. Experimental setup and results
We set a timeout of 1 second for all agents to choose its

next move, except for the heuristics agent who does not need
any timeout because it does not apply an iterative process: It
calls its heuristics function once on each possible move and
keeps the move with the highest score, or randomly draws one
move among the ones with the highest score.

All experiments have been done through a boop. Android
app we are developing, running an Android virtual device on
Linux, thus simulating the limited resources of an Android
phone compared to a computer. The source code of the
Android app, the experimental setup and the results can be
found at github.com/richoux/Pobo/releases/tag/0.6.2.

Table I compiles results of 100 games of our MCTS-CO
agent against the vanilla MCTS agent, all combinations of
Combinatorial Optimization-enhanced MCTS agents, and the
heuristics agent. The MCTS-CO agent played half of these
games as the first player P1, and the other half as the second
player P2.

TABLE I: Number of victories of our MCTS-CO agent versus
other agents, being the 1st player P1 or the 2nd player P2.
MCTS-CO and its opponent start 50 games each.

MCTS-CO’s opponent MCTS-CO P1 MCTS-CO P2 win rate
Vanilla MCTS 47 49 96%
Heuristics 30 50 80%
MCTS+S 31 46 77%
MCTS+E 40 49 89%
MCTS+P 49 50 99%
MCTS+SE 24 42 66%
MCTS+SP 35 50 85%
MCTS+EP 14 50 64%

We see that MCTS-CO wins 96 games against the vanilla
MCTS, over 100 games, showing that injecting Combinatorial
Optimization into MCTS leads to very significant improve-
ments. One could argue that these improvements could be
obtained with the crafted heuristics function alone, used in the
objective function of our Combinatorial Optimization model.
This is not the case however, since MCTS-CO also beats 80
times over 100 games the heuristics agent, our second baseline.
This shows that the gain of performances comes from the
combination of MCTS and Combinatorial Optimization, rather
than just the heuristics function alone.

Games against different combinations of Combinatorial
Optimization-enhanced MCTS agents allow us to estimate
which parts of our methods contribute the most to its im-
provements. First, one can observe that MCTS-CO significantly
outperforms all other Combinatorial Optimization-enhanced
MCTS agents. Taken separately, each Combinatorial Optimiza-
tion injection in the Selection, the Expansion and the Playout

step does not bring much compared to the vanilla MCTS agent,
with eventually the exception of the MCTS+S agent. It is
interesting to observe that, despite being not efficient alone,
the Combinatorial Optimization-enhanced Expansion step is
a key element while combined with either a Combinatorial
Optimization injection in the Selection or the Playout step,
as illustrated by the win rate difference of MCTS-CO versus
MCTS+SE/EP, and versus MCTS+SP. We can see that inject-
ing Combinatorial Optimization in the Expansion step both
greatly keeps up the improvements initiated by MCTS+S, but
is also crucial for the Combinatorial Optimization-enhanced
Playout step in MCTS+P: Although MCTS+P shows the poorest
results among all Combinatorial Optimization-enhanced MCTS
agents, MCTS+EP reveals itself to be the best one. We argue
that the good synergy between the enhanced Expansion and the
enhanced Selection, and in particular between the enhanced
Expansion and the enhanced Playout, explains the excellent
performance of MCTS-CO against our two baseline agents.

B. Investigating unbalanced results between Player 1 and 2

One can observe from Table I that MCTS-CO’s win rate
is significantly higher when the agent is playing second,
loosing only very few games in that position. There are two
possibilities to explain this: 1. The agent is better when playing
second for some reasons, 2. The game itself is unbalanced and
favors the second player. This would be unusual, since most
of the time, the second player is on the contrary disadvantaged
in abstract games, but we know that at high level, some boop.
players tend to think that starting second is actually a favorable
position3.

Our hypothesis is that the MCTS-CO agent is indeed better
when playing as the second player, and that boop. is a correctly
balanced game. To check our hypothesis, we run mirror games,
i.e., games where both players are the same agent. We made
100 mirror games with the vanilla MCTS agent as a control
group, to test if boop. is a well-balanced game and 100 mirror
games with MCTS-CO, the heuristics agent, MCTS+S, MCTS+E,
and MCTS+P. Results are compiled in Table II.

TABLE II: Results of 100 mirror games.

Agents P1 wins P2 wins
Vanilla MCTS 47 53
MCTS-CO 7 93
Heuristics 60 40
MCTS+S 46 54
MCTS+E 46 54
MCTS+P 14 86

Games of the vanilla MCTS agents indicate that there
might have some slight advantage for the second player,
although statistics over 100 games are not enough to draw
solid conclusions. The balance question would deserve a
deeper investigation. Moreover, balancing abstract games is
notoriously difficult: Chess is considered to be a correctly
balanced game, however White playing first has greater chance

3From personal communications with highly ranked boop. players on the
Board Game Arena platform.

https://github.com/richoux/Pobo/releases/tag/0.6.2
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to win: Chessgames.com 2023 statistics indicates that White
wins 57.13% of games not finishing with a draw4. With 53%
of win rates for the vanilla MCTS agent player starting second,
it is fair to consider that boop. is a correctly balanced game.
This is also confirmed by mirror games with the MCTS+S agent
and the MCTS+E agent.

Mirror games of MCTS-CO indisputably shows that the agent
is better when playing second. We first thought this was only
due to the heuristics function used by the objective function in
our model, but this is in contradiction with the results of the
heuristics agent’s mirror games. Nevertheless, our heuristics
function still seems to be the culprit, but in a more complex
way, when it is used repeatedly to anticipate the next moves,
like in the MCTS+P agent, and of course like in MCTS-CO.

Indeed, playing first at boop. requires a particular attention
on the positioning of our own pieces and on decisions to
make: The first player needs to “attack” at the right moment,
i.e., trying to build alignments of its pieces, neither too early
nor too late in the game, whereas the role of the second
player consists more to “defend” in early game, trying to
break down the first player’s formations. This may be an
easier role to manage, and that is currently better taken into
account by our heuristics function. This bias is amplified by
the successive calls of the objective function (and then the
heuristics function) in Combinatorial Optimization-enhanced
Playout steps, leading to a stronger defense and a weaker
attack as well. Taking better early game decisions for the first
player would ask an extensive specialization of the heuristics
function, which is not the goal of our work in this paper.

VI. AI VERSUS HUMAN EXPERIMENT

To have a first estimation of the MCTS-CO agent’s level
against human players, we ask the permission to the Board
Game Arena platform for creating an account specifically for
this agent5.

We deployed the following process: After making an an-
nouncement on the Board Game Arena forum about our AI
agent account, as the Board Game Arena platform recom-
mended us to do, we created boop. games from this account
and waited for someone to join. We never joined games created
by other players. At the beginning of the game, we used the
chat to warn the opponent that he or she is playing against an
AI, telling that it is possible to cancel the game without any
penalties if he or she is not comfortable with that. Therefore,
all opponents were warned they were playing against an AI
agent, and all games taken into account for the experiment
are games where the opponent agrees to play against the
AI. To ensure this, games have been done “manually”: We
played from the AI agent account on a computer next to an
Android tablet running the boop. app implementing MCTS-
CO. Then, we reproduced each move from the Board Game
Arena opponent on the Android tablet as a human player,
and played on Board Game Arena each move decided by
the MCTS-CO agent in the app. This way, we acted as a
human operator reproducing moves from Board Game Arena

4https://www.chessgames.com/chessstats.html
5https://boardgamearena.com/player?id=95213950

to the Android app and from the Android app to Board Game
Arena, responding also to eventual questions from opponents
on Board Game Arena.

Board Game Arena is implementing its own ELO rating,
which should not be directly compared to Chess ELO rating
for instance. Board Game Arena attributes a rank to players
according to their ELO rating: Beginner (0 ELO points), Ap-
prentice (1-99), Average (100-199), Good (200-299), Strong
(300-499), Expert (500-699), and Master (700+). At the time
this experiment was conducted, there were 6 boop. Master
players only on the Board Game Arena platform, over 5,316
boop. players.

Our agent played 51 games against 28 players with ELO
points from 0 to 865, between the 13th of December, 2023
and the 10th of January, 2024. It won 35 games (69% of win
rate), and finished with 373 ELO points (Strong rank), ranked
56th worldwide on the platform. It reached the Strong rank
after its 28th game. Figure 3 illustrates the progression of our
agent’s ELO points. Although its ELO points evolution looks
rapid at first glance, it should not be directly compared with
the evolutions of human players on Board Game Arena, since
many players are likely to discover the game on this platform
and then start from a completely beginner level, when our
agent played its first games at full strength.

Fig. 3: ELO rating of MCTS-CO on Board Game Arena against
human players.

Considering Figure 3, one could think that the agent reached
its top performances against humans players, since the ELO
points curve seems to converge just below 400 points. We do
not think it is the case, though, and believe that it could go
further, even maybe reaching the bar of 500 ELO points. The
three last games were played against its strongest opponent, a
Master player with a 865 ELO rating, ranked 3rd worldwide
at that time. Our agent lost these three games and that is what
makes the curve flat at the end.

VII. CONCLUSION AND PERSPECTIVES

We presented in this paper three different injections of Com-
binatorial Optimization into Monte Carlo Tree Search (MCTS):
Just before the Selection step, during the Expansion step, and
during the Playout step. While previous works combine MCTS
with Combinatorial Optimization solvers to improve them,
this is the first time Combinatorial Optimization has been
combined with MCTS to improve the latter, to the best of our
knowledge. Experimental results show that a Combinatorial

https://www.chessgames.com/chessstats.html
https://boardgamearena.com/player?id=95213950
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Optimization-enhanced MCTS algorithm greatly outperforms
the vanilla MCTS algorithm: In the board game boop., our
methods wins 96% of its games against vanilla MCTS, and
80% of its games against an heuristics-based agent, the second
baseline, on a virtual device simulating the limited computing
resources an Android device may offer, compared to a personal
computer. We also did an ablation study allowing us to analyze
which Combinatorial Optimization injections are essentials for
reaching these performances. From this ablation study, we
conclude that injecting Combinatorial Optimization into the
Expansion Step is the key stone of our method, performing
poorly alone but extremely well while combined with both a
Combinatorial Optimization injection into the Selection and
the Playout steps.

In parallel of AI versus AI experiments, we also ask the
opportunity to the Board Game Arena platform to let our AI
agent plays boop. against human players, allowing us to have a
rough estimation of its ELO rating. Our agent plays 51 games
against 28 opponents of very different skills, winning 69%
of its games (35 wins, 16 losses), finishing with a 373 ELO
rating (in the “Strong players” class on Board Game Arena)
and ranked 56th worldwide on the platform over 5,316 boop.
players.

Apart from trivial improvements we could bring to our
method and its implementation, such as the tuning of its
3 parameters, an interesting perspective could be modeling
and solving a Combinatorial Optimization problem going
beyond one-stage decision-making: So far, the Combinatorial
Optimization problem we solve aims to find the best move
in the current situation, and the combinatorial part of this
problem is certainly under-exploited for the solver we use.
Tackling k-stage decision-makings, i.e., deciding the move af-
ter considering k-1 successive moves, would constitute a great
challenge from a combinatorial point of view, for instance by
certifying that the opponent does not have any direct winning
moves next after our move (unless all our moves are losing
moves).
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