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Abstract—We propose a probabilistic model for the parallel
execution of Las Vegas algorithms, i.e. randomized algorithms
whose runtime might vary from one execution to another,
even with the same input. This model aims at predicting the
parallel performances (i.e. speedups) by analyzing the runtime
distribution of the sequential runs of the algorithm. Then, we
study in practice the case of a particular Las Vegas algorithm
for combinatorial optimization on three classical problems, and
compare the model with an actual parallel implementation up
to 256 cores. We show that the prediction can be accurate,
matching the actual speedups very well up to 100 parallel cores
and then with a deviation of about 20% up to 256 cores.

I. INTRODUCTION

We consider in this paper Las Vegas algorithms, a general-
ization of Monte-Carlo algorithms introduced a few decades
ago by [1], i.e., randomized algorithms whose runtime might
vary from one execution to another, even with the same
input. An important class of Las Vegas algorithms is the
family of Local Search methods and metaheuristics such
as Simulated Annealing, Genetic Algorithms, Tabu Search,
Swarm Optimization, Ant-Colony optimization, which have
been applied to different sets of problems such as resource
allocation, scheduling, packing, layout design, frequency
allocation, etc. They have been used in Combinatorial Op-
timization for finding optimal or near-optimal solutions for
several decades [2], stemming from the pioneering work of
Lin on the Traveling Salesman Problem [3]. These methods
are now widely used in combinatorial optimization to solve
real-life problems when the search space is too large to
be explored by complete search algorithm, such as Mixed
Integer Programming or Constraint Solving, c.f. [4].

In the last years, several proposals for implementing local
search algorithms on parallel computers have been proposed,
the most popular being to run several competing instances
of the algorithm on different cores with different initial
conditions or parameters, and let the fastest process win
over others. We thus have an algorithm with the minimal
execution time among the launched processes. This leads
to so-called independent multi-walk algorithms in the local
search community [5] and portfolio algorithms in the SAT
community (satisfiability of Boolean formula) [6]. This
parallelization scheme can of course be generalized to any
Las Vegas algorithm.

The goal of this paper is to study the parallel performance

of Las Vegas algorithms under this independent multi-walk
scheme, and to predict the performance of parallel execution
thanks to a probabilistic model based on the sequential
runtime distribution of the algorithm. It is indeed important
to know how a given Las Vegas algorithm (or, more pre-
cisely, a couple formed by the algorithm and the problem
instance) would scale on massively parallel hardware. This
would make it possible to estimate the maximum number
of cores until which parallelization is efficient and thus the
actual parallel computing power needed to solve a problem.
As supercomputers or systems such as Google Cloud and
Amazon EC2 can be rented by core-hour with a limit on the
maximum number of cores to be used, this is an important
information to have before actually deciding to use a given
platform. Moreover, We confront the predictions computed
by our probabilistic model with actual speedups obtained
for a parallel implementation of a local search algorithm
and show that the prediction can be accurate, matching the
actual speedup very well up to 100 parallel cores and then
with a deviation limited to about 20% up to 256 cores.

The paper is organized as follows. Section 2 is devoted to
present the definition of Las Vegas algorithms, their parallel
multi-walk execution scheme, and the main idea for predict-
ing the parallel speedups. Section III defines the probabilistic
model of Las Vegas algorithms and their parallel execution
scheme. Section IV presents the example of local search
algorithms for combinatorial optimization, while Section V
introduced the benchmark problems and their sequential and
parallel performances. Section VI then applies the general
probabilistic model to the benchmark problems in order
to predict their parallel speed-ups, which are compared to
experimental parallel speed-ups in Section VII. A short
conclusion and future work will end the paper.

II. MULTI-WALK LAS VEGAS ALGORITHMS

We borrow the following definition from [7], Chapter 4.

Definition 1 (Las Vegas Algorithm). An algorithm A for a
problem class Π is a (generalized) Las Vegas algorithm if
and only if it has the following properties:

1) If for a given problem instance π ∈ Π, algorithm A
terminates returning a solution s, s is guaranteed to
be a correct solution of π.



2) For any given instance π ∈ Π, the runtime of A applied
to π is a random variable.

This definition includes algorithms which are not guar-
anteed to return a solution. However in practice, we will
only consider terminating Las Vegas algorithms, such as
local search algorithms which always terminate if run for
an unbounded time.

A. Multi-walk Parallel Extension

Parallel implementation of local search metaheuristics [4],
[8] has been studied since the early 1990s, when parallel ma-
chines started to become widely available [9], [5]. With the
increasing availability of PC clusters in the early 2000s, this
domain became active again [10], [11]. Apart from domain-
decomposition methods and population-based method (such
as genetic algorithms), [5] distinguishes between single-
walk and multi-walk methods for Local Search. Single-
walk methods consist in using parallelism inside a single
search process, e.g., for parallelizing the exploration of the
neighborhood (see for instance [12] for such a method
making use of GPUs for the parallel phase). Multi-walk
methods (parallel execution of multi-start methods) consist
in developing concurrent explorations of the search space,
either independently or cooperatively with some communi-
cation between concurrent processes. Sophisticated cooper-
ative strategies for multi-walk methods can be devised by
using solution pools [13], but require shared-memory or
emulation of central memory in distributed clusters, thus
impacting on performance. A key point is that a multi-
walk scheme is easier to implement on parallel computers
without shared memory and can lead, in theory at least, to
linear speedups [5]. However this is only true under certain
assumptions and we will see that we need to develop a
more realistic model in order to cope with the performance
actually observed in parallel executions.

Let us now formally define a parallel multi-walk Las
Vegas algorithm.

Definition 2 (Multi-walk Las Vegas Algorithm). An algo-
rithm A’ for a problem class Π is a (parallel) multi-walk Las
Vegas algorithm if and only if it has the following properties:

1) It consists of n instances of a sequential Las Vegas
algorithm A for Π, say A1, ..., An.

2) If, for a given problem instance π ∈ Π, there exists at
least one i ∈ [1, n] such that Ai terminates, then let
Am,m ∈ [1, n], be the instance of A terminating with
the minimal runtime and let s be the solution returned
by Am. Then algorithm A’ terminates in the same time
as Am and returns solution s.

3) If, for a given problem instance π ∈ Π, all Ai, i ∈
[1, n], do not terminate then A’ does not terminate.

B. How to Estimate Parallel Speedup ?

The multi-walk parallel scheme is rather simple, yet it
provides an interesting test-case to study how Las Vegas
algorithms can scale-up in parallel. Indeed runtime will vary
among the processes launched in parallel and the overall
runtime will be that of the instance with minimal execution
time (i.e., ”long” runs are killed by ”shorter” ones). The
question is thus to quantify the relative notion of short
and long runs and their probability distribution. This might
gives us a key to quantify the expected parallel speed-up.
Obviously, this can be deduced from the sequential behavior
of the algorithm, and more precisely from the proportion of
long and short runs in the sequential runtime distribution.

In the following, we propose a probabilistic model to
quantify the expected speed-up of multi-walk Las Vegas
algorithms. This makes it possible to give a general formula
for the speed-up, depending on the sequential behavior
of the algorithm. Our model is related to order statistics,
which is the statistics of sorted random draws, a rather new
domain of statistics [14]. Indeed, explicit formulas have been
given for several well-known distributions. Relying on an
approximation of the sequential distribution, we compute the
average speed-up for the multi-walk extension. Experiments
show that the prediction is quite good and opens the way
for defining more accurate models and apply them to larger
classes of algorithms.

Previous works [5] studied the case of a particular distri-
bution for the sequential algorithm: the exponential distribu-
tion. This case is ideal and the best possible, as it yields a
linear speed-up. Our model makes it possible to approximate
Las Vegas algorithms by other types of distribution, such as
a shifted exponential distribution or a lognormal distribution.
In the last two cases the speed-up is no longer linear, but
admits a finite limit when the number of processors tends
toward infinity. We will see that it fits experimental data for
some problems.

III. PROBABILISTIC MODEL

Local Search algorithms are stochastic processes. They
include several random components: choice of an initial
configuration, choice of a move among several candidates,
plateau mechanism, random restart, etc. In the following, we
will consider the computation time of an algorithm (whatever
it is) as a random variable, and use elements of probability
theory to study its multi-walk parallel version. Notice that
the computation time is not necessarily the cpu-time; it
can also be the number of iterations performed during the
execution of the algorithm.

A. Min Distribution

Consider a given algorithm on a given problem of a given
size, say, the MAGIC-SQUARE 10 × 10. Depending on the
result of some random components inside the algorithm, it
may find a solution after 0 iterations, 10 iterations, or 106



iterations. The number of iterations of the algorithm is thus
a discrete random variable, let’s call it Y , with values in N.
Y can be studied through its cumulative distribution, which
is by definition the function FY s.t. FY (x) = P[Y ≤ x], or
by its distribution, which is by definition the derivative of
FY : fY = F ′Y .

It is often more convenient to consider distributions with
values in R because it makes calculations easier. For the
same reason, although fY is defined in N, we will use its
natural extension to R. The expectation of the computation
is then defined as E[Y ] =

∫∞
0
tfY (t)dt

Assume that the base algorithm is concurrently run in
parallel on n cores. In other words, over each core the
running process is a fork of the algorithm. The first process
that finds a solution then kills all others and the algorithm
terminates. The i-th process corresponds to a draw of a
random variable Xi, following distribution fY . The variables
Xi are thus independently and identically distributed (i.i.d.).
The computation time of the whole parallel process is also a
random variable, let’s call it Z(n), with a distribution fZ(n)

that depends on both n and fY . Since all the Xi are i.i.d., the
cumulative distribution FZ(n) can be computed as follows:

FZ(n) = P[Z(n) ≤ x]

= P[∃i ∈ {1...n}, Xi ≤ x]

= 1− P[∀i ∈ {1...n}, Xi > x]

= 1−
n∏
i=1

P[Xi > x]

= 1− (1−FY (x))
n

which leads to:

fZ(n) = (1− (1−FY )
n
)′

= nfY (1−FY )n−1

Thus, knowing the distribution for the base algorithm Y ,
one can calculate the distribution for Z(n). In the general
case, the formula shows that the parallel algorithm favors
short runs, by killing the slower processes. Thus, we can
expect that the distribution of Z(n) moves toward the origin,
and is more peaked. As an example, Figure 1 shows this
phenomenon when the base algorithm admits a Gaussian
distribution.

B. Expectation and Speed-up

The model described above gives the probability distribu-
tion of a parallelized version of any random algorithm. We
can now calculate the expectation for the parallel process
with the following relation:
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Figure 1. Distribution of Z(n), in the case where Y admits a Gaussian
distribution (cut on R− and renormalized). The blue curve is Y . The
distributions of Z(n) are in pink for n = 10, in yellow for n = 100
and in green for n = 1000.

E[Z(n)] =

∫ ∞
0

tfZ(n)(t)dt

= n

∫ ∞
0

tfY (t)(1−FY (t))n−1dt

Unfortunately, this does not lead to a general formula
for E[Z(n)]. In the following, we will study it for different
specific distributions.

To measure the gain obtained by parallelizing the algo-
rithm on n core, we will study the speed-up Gn defined as:

Gn = E[Y ]/E[Z(n)]

Again, no general formula can be computed and the
expression of the speed-up depends on the distribution of
Y .

However, it is worth noting that our computation of
the speed-up is related to order statistics, see [14] for a
detailed presentation. Order statistics are the statistics of
sorted random draws. For instance, the first order statistics
of a distribution is its minimal value, and the kth order
statistic is its kth-smallest value. For predicting the speed-
up of a multi-walk Las Vegas algorithm on n cores, we
are indeed interested in computing the expectation of the
distribution of the minimum among n draws. As the above
formula suggests, this may lead to heavy calculations, but
recent studies such as [15] give explicit formulas for this
quantity for several classical probability distributions.

C. Case of an Exponential Distribution

Assume that Y has a shifted exponential distribution, as
it has been suggested by [16], [17].

fY (t) =

{
0 if t ≤ x0
λe−λ(t−x0) if t > x0

FY (t) =

{
0 if t ≤ x0
1− e−λ(t−x0) if t > x0

E[Y ] = x0 + 1/λ



Then the above formula can be symbolically computed by
hand:

fZ(n)(t) =

{
0 if t ≤ x0
nλe−nλ(t−x0) if t > x0

FZ(n)(t) =

{
0 if t ≤ x0
1− e−nλ(t−x0) if t > x0

The intuitive observation of section III-A is easily seen
on the expression of the parallel distribution, which has an
initial value multiplied by n but an exponential factor de-
creasing n-times faster, as shown on the curves of Figure 2.
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Figure 2. For an exponential distribution, here in blue with x0 = 100
and λ = 1/1000, simulations of the distribution of Z(n)for n = 2 (pink),
n = 4 (yellow) and n = 8 (green).

And in this case, one can symbolically compute both the
expectation and speed-up for Z(n):

E[Z(n)] = nλ

∫ ∞
x0

te−nλ(t−x0)dt

= x0 +
1

nλ

Gn =
x0 + 1

λ

x0 + 1
nλ
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Figure 3. Predicted speed-up in case of an exponential distribution, with
x0 = 100 and λ = 1/1000, w.r.t. the number of cores.

Figure 3 shows the evolution of the speed-up when the
number of cores increases. With such a rather simple formula

for the speed-up, it is worth studying what happens when
the number of cores n tends to infinity. Depending on the
chosen algorithm, x0 may be null or not. If x0 = 0, then
the expectation tends to 0 and the speed-up is equal to n.
This case has already been studied by [5]. For x0 > 0, the
speed-up admits a finite limit which is x0+

1
λ

x0
= 1+ 1

x0λ
. Yet,

this limit may be reached slowly, and depends on the values
of x0 and λ: obviously, the closest x0 is to zero and the
higher it will be. Another interesting value is the coefficient
of the tangent at the origin, which approximates the speed-
up for a small number of cores. In case of an exponential,
it is (x0 ∗ λ + 1). The higher x0 and λ, the bigger is the
speed-up at the beginning. In the following, we will see
that, depending on the combinations of x0 and λ, different
behaviors can be observed.

D. Case of a Lognormal Distribution
Other distributions can be considered, depending on the

behavior of the base algorithm. We will study the case of
a lognormal distribution, which is the log of a Gaussian
distribution, because it will be shown in Section VI-B that
it fits the data of one experiment. It has two parameters, the
mean µ and the standard deviation σ. In the same way as the
shifted exponential, we shift the distribution so that it starts
at a given parameter x0. Formally, a (shifted) lognormal
distribution is defined as:

fY (t) =

 0 if t < x0

e
− (−µ+log(t−x0))2

2σ2√
2π(t−x0)σ

if t > x0

FY (t) =

{
0 if t < x0
1
2erfc(µ−log(t−x0)√

2σ
) if t > x0

where erfc is the complementary error function defined by
erfc(z) = 2√

π

∫∞
z
e−t

2

dt. The mean, variance and median

are known and equal to eµ+
σ2

2 , e2µ+σ
2

(eσ
2 − 1) and eµ

respectively.
Figure 4 depicts lognormal distributions of Z(n), for

several n. The computations for the distribution of Z(n), its
expectation and the theoretical speed-up are given by quite
complicated formulas. But [15] gives an explicit formula
for all the moments of lognormal order statistics with only
a numerical integration step, from which we can derive a
computation of the speed-up (since the expectation of Z(n)is
the first order moment for the first order statistics). This
allows us to draw the general shape of the speed-up, an
example being given on Figure 5. Due to the numerical
integration step, which requires numerical values for the
number of cores n, we restrict the computation to integer
values of n.

IV. APPLICATION TO LOCAL SEARCH

Since about a decade, the interest for the family of
Local Search methods and Metaheuristics for solving large
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Figure 4. For a lognormal distribution (in blue), with x0 = 0, µ = 5 and
σ = 1, simulations of the distribution of Z(n)for n = 2 (pink), n = 4
(yellow) and n = 8 (green).
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Figure 5. Predicted speed-up in case of a lognormal distribution, with
x0 = 0, µ = 5 and σ = 1, w.r.t. the number of cores.

combinatorial problems has been growing and has attracted
much attention from both the Operations Research and
the Artificial Intelligence communities for solving real-life
problems [8], [4]. Efficient general-purpose systems for
Local Search now exist, see for instance [18].

Local Search starts from a random configuration and tries
to improve this configuration, little by little, through small
changes in the values of the problem variables. Hence the
term “local search” as, at each time step, only new configu-
rations that are “neighbors” of the current configuration are
explored. The definition of what constitutes a neighborhood
will of course be problem-dependent, but basically it consists
in changing the value of a few variables only (usually one
or two). The advantage of Local Search methods is that
they will usually quickly converge towards a solution (if
the optimality criterion and the notion of neighborhood are
defined correctly...) and not exhaustively explore the entire
search space.

Applying Local Search to Constraint Satisfaction Prob-
lems (CSP) has also been attracting some interest since
about a decade [19], [18], as it can tackle CSPs instances
far beyond the reach of classical propagation-based con-
straint solvers. A generic, domain-independent constraint-
based local search method, named Adaptive Search, has been
proposed by [19], [20]. This meta-heuristic takes advantage
of the structure of the problem in terms of constraints and
variables and can guide the search more precisely than a

single global cost function to optimize, such as for instance
the number of violated constraints. The algorithm also uses
a short-term adaptive memory in the spirit of Tabu Search
in order to prevent stagnation in local minima and loops.

An implementation of Adaptive Search (AS) has been
developed in C language as a framework library and is
available as a freeware at the URL:
http://cri-dist.univ-paris1.fr/diaz/adaptive/

We used this reference implementation for our experi-
ments. The Adaptive Search method can be applied to a large
class of constraints (e.g., linear and non-linear arithmetic
constraints, symbolic constraints, etc) and naturally copes
with over-constrained problems. The input of the method is
a Constraint Satisfaction Problem (CSP for short), which is
defined as a triple (X;D;C), where X is a set of variables,
D is a set of domains, i.e., finite sets of possible values
(one domain for each variable), and C a set of constraints
restricting the values that the variables can simultaneously
take.

Also note that we are tackling constraint satisfaction
problems as optimization problems, that is, we want to
minimize the global error (representing the violation of
constraints) to value zero, therefore finding a solution means
that we actually reach the bound (zero) of the objective
function to minimize.

The core ideas of adaptive search can be summarized as
follows:
• to consider for each constraint a heuristic function that

is able to compute an approximated degree of satisfac-
tion of the goals (the current error on the constraint);

• to aggregate constraints on each variable and project
the error on variables thus trying to repair the worst
variable with the most promising value;

• to keep a short-term memory of bad configurations to
avoid looping (i.e., some sort of tabu list) together with
a reset mechanism.

V. BENCHMARK PROBLEMS AND EXPERIMENTAL
RESULTS

We detail here the performance and speed-ups obtained
with both sequential and parallel multi-walk Adaptive Search
implementations. We have chosen to test this method on a
hard combinatorial problem abstracted from radar and sonar
applications (COSTAS ARRAY) and two problems from the
CSPLib benchmark library1:
• ALL-INTERVAL Series (prob007 in CSPLib)
• The MAGIC-SQUARE problem (prob019 in CSPLib).

A Costas array is an N ×N grid containing N marks such
that there is exactly one mark per row and per column and
the N(N−1)/2 vectors joining the marks are all different. It
is convenient to see the COSTAS ARRAY Problem (CAP) as a
permutation problem by considering an array of N variables

1http://www.csplib.org



(V1, . . . , VN ) which forms a permutation of {1, 2, . . . , N}.
We refer the reader to [21] for a complete survey on the
COSTAS ARRAY Problem and to [22] for the modeling and
solving by local search.

These benchmarks could involve very large combinatorial
search spaces, e.g., the 200×200 MAGIC-SQUARE prob-
lem requires 40,000 variables whose domains range over
40,000 values. Indeed the search space in the Adaptive
Search model (using permutations) is 40, 000!, i.e., more
than 10166713 configurations. Classical propagation-based
constraint solvers cannot solve this problem for instances
higher than 20x20.

A. Sequential Results

We run our benchmarks in a sequential manner in order to
have about 650 runtimes for each. Sequential experiments, as
well as parallel experiments, have been done on the Griffon
cluster of the Grid’5000 platform [23], the French national
grid for research, which contains 8,596 cores deployed
on 11 sites distributed in France. The following Table I
shows the minimum, mean, median, maximum and standard
deviation among the runtimes (in seconds) and the number
of iterations for our three benchmarks.

Seconds MS 200 AI 700 Costas 21
Min 5.5 23.3 6.6

Mean 382.0 1, 354.0 3, 744.4
Median 126.3 945.4 2, 457.4

Max 7, 441.6 10, 243.4 19, 972.0
Std Dev 873.0 1, 363.4 3, 655.5

#iterations MS 200 AI 700 Costas 21
Min 6, 210 1, 217 321, 361

Mean 443, 970 110, 393 183, 428, 617
Median 164, 042 76, 242 119, 667, 588

Max 7, 895, 872 826, 871 977, 709, 115
Std Dev 933, 766 111, 352 179, 049, 696

Table I
SEQUENTIAL EXECUTIONS IN SECONDS AND ITERATIONS

One can see from Table I that runtimes and numbers of it-
erations are spread over a large interval for each benchmark,
illustrating the stochasticity of the algorithm. Depending on
the benchmark, there is a ratio of a few thousands times
between the minimum and the maximum runtimes.

B. Parallel Results

We have conduct parallel experiments on the Grid5000
platform.For our experiments, we used the Griffon cluster
at Nancy, composed of 184 Intel Xeon L5420 (Quad-core,
2.5GHz, 12MB of L2-cache, bus frequency at 1333MHz),
thus with a total of 736 cores available giving a peak
performances of 7.36TFlops.

Table II presents the speedup for the execution time and
the number of iteration up to 256 cores for the execu-
tions of large benchmarks: MAGIC-SQUARE (instance of

size 200×200), ALL-INTERVAL (instance of size 700) and
COSTAS ARRAY (instance of size 21). The same code has
been ported and executed, timings are given in seconds
and are the average of 50 runs. One can notice there is
no significant difference between speed-ups in cpu-time
and in number of iterations, therefore we will prefer as a
time measure the number of iterations, which has the good
property of not being machine-dependent. Similar speed-ups
have been achieved on other parallel machines [24].

Problem on 1 core speed-up on k cores
16 32 64 128 256

MS200 time 382.0 18.3 24.5 32.3 37.0 47.8
#iter. 443, 970 16.6 22.2 29.9 34.3 45.0

AI700 time 1, 354.0 12.9 19.3 30.6 39.2 45.5
#iter. 110, 393 12.8 20.2 29.3 37.3 48.0

Costas21 time 3, 744.4 15.7 26.4 59.8 154.5 274.8
#iter. 183428617 15.8 26.4 60.0 159.2 290.5

Table II
PARALLEL SPEED-UPS (IN TIME AND NUMBER OF ITERATIONS)

For the two CSPLib benchmarks, one can observe the
stabilization point is not yet obtained for 256 cores, even if
speed-ups do not increase as fast as the number of cores,
i.e., are getting further away from linear speed-up. For the
COSTAS ARRAY Problem, our algorithm reaches linear or
even supra-linear speed-ups up to 256 cores. Actually, it
scales linearly far beyond this point, i.e., at least up to
8,192 cores, as reported in [22]. These speed-ups are visually
depicted on Figure 6, up to 64 cores only to improve
readability. Speed-ups of the average runtime for MAGIC-
SQUARE and ALL-INTERVAL look similar, but their actual
runtime behaviors are different, as will be seen in the next
section.
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Figure 6. Speed-ups for the three benchmarks problems

VI. PREDICTION OF PARALLEL SPEED-UPS

On each problem, the sequential benchmark gives ob-
servations of the distribution of the algorithm runtime fY .



Yet, the exact distribution is still unknown. It can be any
real distribution, not even a classical one. In the following,
we will rely on the assumption that Y is distributed with
a known parametric distribution. We perform a statistical
test, called Kolmogorov-Smirnov test, on the hypothesis
H0 that the collected observations correspond to a theo-
retical distribution. Assuming H0, the test first computes
the probability that the distance between the collected data
and the theoretical distribution does not significantly differ
from its theoretical value. This probability is called the p-
value. Then, the p-value is compared to a fixed threshhold
(usually 0.05). If it is smaller, one rejects H0. For us,
it means that the observations do not correspond to the
theoretical distribution. If the p-value is high, we will
consider that the distribution of Y is approximated by the
theoretical one. Note that the Kolmogorov-Smirnov test is a
statistical test, which in no way proves that Y follows the
distribution. However, it measures how well the observations
fit a theoretical curve and, as it will be seen in the following,
it is accurate enough for our purpose.

Our benchmarks appear to fit with two distributions:
the exponential distribution, as suggested by [25], and
the lognormal distribution. We have also performed the
Kolmogorov-Smirnov test on other distributions (e.g., Gaus-
sian and Lévy), but obtained negative results w.r.t. the
experimental benchmarks, thus we do not include them in
the sequel. For each problem, we need to estimate the value
of the parameters of the distribution, which is done on a
case by case basis. Once we have an estimated distribution
for the runtimes of Y , it becomes possible to compute the
expectation of the parallel runtimes and the speed-up thanks
to formulas of Section III-B.

In the following, all the analyses are done on the number
of iterations, and all the mathematical computations are done
with Mathematica [26].

A. The ALL-INTERVAL Series Problem
The analysis is done on 720 runs of the Adaptive Search

algorithm on the instance of ALL-INTERVAL series for 700
notes. The sequence of observations is written AI 700 in the
following.

We test the hypothesis that the observations admit
a shifted exponential distribution as introduced in Sec-
tion III-C. The first step consists in estimating the parameters
of the distribution, which for a shifted exponential are
the value of the shift x0 and λ2. We take for x0 the
minimum observed value, x0 = 1217. The exponential
parameter is estimated thanks to the following relation: for a
non-shifted exponential distribution, the expectation is 1/λ.
Thus we take λ = 1/(mean(AI 700) − x0), which gives
λ = 9.15956 ∗ 10−6.

We then run the Kolmogorov-Smirnov test on the shifted
exponential distribution with these values of x0 and λ,

2All the notations are the same as in section III.

which answers positively (computed p-value: 0.77435). We
thus admit the hypothesis that AI 700 fits this shifted
exponential distribution. As an illustration, Figure 7 shows
the normalized histogram of the observed runtimes and the
theoretical distribution.
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Figure 7. Histogram of the observed number of iterations for 720 runs
on the ALL-INTERVAL series problem with N = 700, in blue. In red, the
corresponding shifted exponential distribution, statistically estimated.

It is then possible to symbolically compute the speed-up
that can be expected with the parallel scheme described in
Section II-A. We use the formulas of Section III-C with
the estimated parameters and obtain a theoretical expression
for the speed-up. This allows us to calculate its value for
different number of cores.

The results are given on Figure 8. With this approximated
distribution, the limit of the speed-up when the number
of cores tends to infinity is 90.7087. One can see that,
with a 256 cores, the curve has not reached its limit, but
comes close. Thus, the speed-up for this instance of ALL-
INTERVAL appears significantly less than linear (i.e., less
than the number of cores).
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Figure 8. Predicted speed-up for AI 700 (plain blue), with its limit (dashed
yellow) and the ideal linear speed-up (dashed pink).

B. The MAGIC-SQUARE Series Problem

For the MAGIC-SQUARE problem with N = 200, the
observations are the number of iterations on 662 runs, with a



minimum of x0 = 6210. The Kolmogorov-Smirnov test on a
shifted exponential distribution fails, but we obtain a positive
result with a lognormal distribution, with µ = 12.0275 and
σ = 1.3398, shifted to x0. These parameters have been
estimated with the use of the Mathematica software. As
an illustration, Figure 9 shows the observations and the
theoretical estimated distribution.
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Figure 9. Histogram of the observed number of iterations for 662 runs
on the MAGIC-SQUARE problem with N = 200, in blue. In red, the
corresponding shifted lognormal distribution, statistically estimated.

The speed-up can be computed by integrating the mini-
mum distribution with numerical integration techniques. The
results are presented on Figure 10. We can observe that
the speed-up grows very fast at the origin, which can be
explained by the high peak of the lognormal distribution
with these parameters. Again, the speed-up is computed with
a numerical integration step, and we only draw the curve
for integer values of n. In this case again, the speed-up is
significantly less than linear from 50 cores onwards, and
the limit of the speed-up when the number of cores tends to
infinity is about 71.5.
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Figure 10. Predicted speed-up for MS 200 (in blue), with the ideal linear
speed-up (dashed pink).

C. The COSTAS ARRAY Problem
The same analysis is done for the runs of the AS algo-

rithm on the COSTAS ARRAY problem with N = 21. The

observations are taken from the benchmark with 638 runs.
The sequence of observations is written Costas 21.

This benchmark has an interesting property: the observed
minimum, 3.2 ∗ 105 is neglictible compared to its mean
(1.8 ∗ 108). Thus, we estimate x0 = 0 and perform a
Kolmogorov-Smirnov test for a (non-shifted) exponential
distribution, with λ = 1/mean(Costas 21) = 5.4 ∗ 10−9.
The test is positive for this exponential distribution, with
a p-value of 0.751915. Figure 11 shows the estimated
distribution compared to the observations.

2 * 108 4 * 108 6 * 108 8 * 108 1 * 109
runtime

1. * 10-9

2. * 10-9

3. * 10-9

4. * 10-9

5. * 10-9

6. * 10-9

probability

Figure 11. Histogram of the observed number of iterations for 638
runs on the COSTAS ARRAY problem with N = 21, in blue. In red, the
corresponding exponential distribution, statistically estimated.

The computation of the theoretical speed-up is then done
in the same way as for AI 700. Yet, in this case, the observed
minimum for x0 is so small that we can approximate the ob-
servations with a non-shifted distribution, thus the predicted
speed-up is strictly linear, as shown in Section III-C. The
results are given on Figure 12. This explains that one may
observe linear speed-up when parallelizing COSTAS ARRAY.
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Figure 12. Predicted speed-up for Costas 21.

VII. ANALYSIS

Table III presents the comparison between the predicted
and the experimental speed-ups. We can see that the accu-
racy of the prediction is very good up to 64 parallel cores and



then the divergence is limited even for 256 parallel cores.
Figure 13 illustrates this comparison graphically.

For the MS 200 problem, the experimental speed-up and
the predicted one are almost identical up to 128 cores and
diverging by 10% for 256 cores. For the AI 700 problem,
the experimental speed-up is below the predicted one by a
maximum of 30% for 128 and 256 cores. For the Costas 21
problem, the experimental speed-up is above the predicted
one by 15% for 128 and 256 cores.

Problem speed-up on k cores
16 32 64 128 256

MS200
experimental 16.6 22.2 29.9 34.3 45.0

predicted 15.94 22.04 28.28 34.26 39.7

AI700
experimental 12.8 20.2 29.3 37.3 48.0

predicted 13.7 23.8 37.8 53.3 67.2

Costas 21
experimental 15.8 26.4 60.0 159.2 290.5

predicted 16.0 32.0 64.0 128.0 256.0

Table III
COMPARISON: EXPERIMENTAL AND PREDICTED SPEEDUPS

It is worth noticing that our model approximates the
behaviors of experimental results very closely, as shown
by the predicted speed-ups matching closely the real ones.
Moreover we can see that on the three benchmark pro-
grams, we needed to use three different types of distribution
(exponential, shifted exponential and lognormal), in order
to approximate the experimental data most closely. This
shows that our model is quite general and can accommodate
different types of parallel behaviors.

A quite interesting behavior is exhibited by the Costas 21
problem. Our model predicts a linear speedup, up to 10,000
cores and beyond, and the experimental data gathered for this
paper confirms this linear speed-up up to 256 cores. Would
it scale up with a larger number of cores? Indeed we did
such an experiment up to 8,192 cores on the JUGENE IBM
Bluegene/P at the Jülich Supercomputing Center in Germany
(with a total 294,912 cores), and reported it in [22]. The
speed-up is linear up to 8,192 cores, thus showing the an
excellent fit between the prediction model and real data.

Finally, let us note that our method exhibits an interesting
phenomenon. For the three problems considered, the prob-
ability of returning a solution in no iterations is non-null:
since they start by a uniform random draw on the search
space, there is a very small, but not null, probability that this
random initialization directly returns the solution. Hence, in
theory, x0 = 0 and the speed-up should admit an infinite
limit when the number of cores tends to infinity. Intuitively,
if the number of cores tends to infinity, at some point it will
be large compared to the size of the search space (for AI 700,
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Figure 13. Predicted versus experimental speed-ups

a number with 1690 digits !), and one of the cores is likely to
find the solution immediately. Yet, in practice, observations
show that the experimental data may be better approximated
by a shifted exponential with x0 > 0, as it is the case for
AI 700. Indeed, the experimental speed-up for AI 700 is
far from linear and has a finite limit. However, Costas 21
has a linear speed-up due to its x0 << 1/λ, which makes
the statistical test succeed for x0 ' 0. Firstly, this suggests
that the comparison between x0 and 1/λ on a number of
observations is a key element for the parallel behavior. It also
means that the number of observations needed to properly
approximate the sequential distribution probably depends on
the problem.

VIII. CONCLUSION

We have proposed a theoretical model for predicting
and analyzing the speed-ups of Las Vegas algorithms. It is
worth noticing that our model mimics the behaviors of the
experimental results very closely, as shown by the predicted
speed-ups matching closely the real ones. Our practical
experiments consisted in testing the accuracy of the model
with respect to three instances of a local search algorithm
for combinatorial optimization problems. We showed that
the parallel speed-ups predicted by our statistical model are
accurate, matching the actual speed-ups very well up to 64
parallel cores and then with a deviation of about 10%, 15%
or 30% (depending on the benchmark problem) up to 256
cores.

However, a limitation of our approach is that, in practice,
we need to be able to approximate the sequential distri-
bution. In addition, this distribution must be one of the
distributions for which the first order statistics is known,
symbolically (as the exponential) or numerically (as the
lognormal). Nevertheless, recent results in the field of order
statistics give explicit formulas for a number of useful
distributions: Gaussian, lognormal, gamma, beta. This pro-
vides a wide range of tools to analyze different behaviors.



Another question is the quality of the Kolmogorov-Smirnov
test, which we use to estimate the sequential distribution.
For the considered benchmark, it proved to be accurate
enough. However, we plan to investigate other statistical
tests, such as the Cramér-von Mises test which could take
into account multiple occurrences in the distribution. In this
paper we validated our approach on classical combinatorial
optimization and CSP benchmarks, but further research will
consider a larger class of problems and algorithms, such as
other randomized algorithms.

Another interesting extension of this work would be to
devise a method for predicting the speed-up from scratch,
that is, without any knowledge on the algorithm distribution.
Preliminary observation suggests that, given a problem and
an algorithm, the general shape of the distribution is the
same when the size of the instances varies. For example,
the different instances of ALL-INTERVAL that we tested all
admit a shifted exponential distribution. If this property is
valid on a wide range of problems/algorithms, then we can
develop a method for predicting the speed-up for large in-
stances by learning the distribution shape on small instances
(which are easy to solve), and estimating the parallel speed-
up for larger instances with our model.
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